por ALPC » Seg Jul 01, 2013 14:33
Olá, não estou certo de como seria a resolução desse exercício:
Com relação aos ângulos internos do triângulo ABC da figura a seguir, a diferença entre o maior e o menor ângulo é igual a:

A)15° B)20° C)25° D)30° E)45°
Eu tentei resolver da seguinte maneira:

Logo, o maior ângulo é o de 90° e o menor é o de 45°, então temos: 90 - 45 = 45
Alternativa E)
Eu acho que essa resolução está errada, pois eu nem soube como usar a medida dos triângulo para se descobrir os ângulos internos.
Gostaria que alguém me corrigisse, se fosse possível.
Obrigado.
-

ALPC
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Jan 04, 2013 16:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Rafael16 » Seg Jul 01, 2013 15:20
Olá
ALPCNão sabemos qual a medida de cada ângulo do triângulo ABC, então não podemos colocar qualquer medida como você fez (colocando 45º para todos os ângulos).

- geometria.png (3.44 KiB) Exibido 2105 vezes
Achando a altura h:
![4^2 = h^2 + 2^2 \Rightarrow h = 2\sqrt[]{3} 4^2 = h^2 + 2^2 \Rightarrow h = 2\sqrt[]{3}](/latexrender/pictures/8ae76246c7f2c2de41ffc630498b5bb3.png)
Achando o ângulo C:

logo, C = 60º
Achando o ângulo B:
![sen(B) = \frac{h}{2\sqrt[]{6}} = \frac{2\sqrt[]{3}}{2\sqrt[]{6}} \Rightarrow sen(B) = \frac{\sqrt[]{2}}{2} sen(B) = \frac{h}{2\sqrt[]{6}} = \frac{2\sqrt[]{3}}{2\sqrt[]{6}} \Rightarrow sen(B) = \frac{\sqrt[]{2}}{2}](/latexrender/pictures/0cb848915d32a549fe3e94fbfa870f82.png)
logo, B = 45º
Sabemos que a soma dos ângulos internos de um triângulo qualquer, é sempre 180º.
A + B + C = 180º
A + 45º + 60º = 180º
A = 75º
A diferença entre o maior ângulo (A) e o menor (B) é igual a 30º
Qualquer dúvida comenta ai.
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por ALPC » Seg Jul 01, 2013 15:33
Entendi. Pelo que jeito, terei mesmo que decorar os ângulos notáveis.
Obrigado.
-

ALPC
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Jan 04, 2013 16:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Soma internos de um triangulo
por leandrynhucarioca » Seg Ago 15, 2011 23:48
- 0 Respostas
- 855 Exibições
- Última mensagem por leandrynhucarioca

Seg Ago 15, 2011 23:48
Geometria Plana
-
- [Ângulos internos do trapézio]
por Gustavo Gomes » Qua Dez 19, 2012 22:37
- 1 Respostas
- 1328 Exibições
- Última mensagem por timoteo

Qui Dez 20, 2012 00:47
Geometria Plana
-
- Soma dos Ângulos internos.
por sauloandrade » Sáb Dez 29, 2012 21:07
- 5 Respostas
- 4463 Exibições
- Última mensagem por e8group

Dom Dez 30, 2012 17:51
Geometria Plana
-
- Angulos internos de um triangulo.
por albtec01 » Sáb Abr 12, 2014 19:19
- 0 Respostas
- 973 Exibições
- Última mensagem por albtec01

Sáb Abr 12, 2014 19:19
Trigonometria
-
- furg- os números que expressam angulos internos
por Natalie » Sex Set 16, 2011 18:30
- 1 Respostas
- 1601 Exibições
- Última mensagem por MarceloFantini

Sex Set 16, 2011 18:45
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.