por Russman » Qui Jun 27, 2013 00:44
Pessoal, essa matriz não é autoadjunta, não é?
![M=\left[\begin{array}{cc}
-\frac{1}{\mu_1}+\frac{\sigma-\beta\mu_1^2}{2\mu_1} & \frac{\sigma-\beta\mu_1^2}{2\mu_1} \\ ~&~\\~&~\\
-\frac{\sigma-\beta\mu_1^2}{2\mu_1} & \frac{1}{\mu_1}-\frac{\sigma-\beta\mu_1^2}{2\mu_1}
\end{array}
\right] M=\left[\begin{array}{cc}
-\frac{1}{\mu_1}+\frac{\sigma-\beta\mu_1^2}{2\mu_1} & \frac{\sigma-\beta\mu_1^2}{2\mu_1} \\ ~&~\\~&~\\
-\frac{\sigma-\beta\mu_1^2}{2\mu_1} & \frac{1}{\mu_1}-\frac{\sigma-\beta\mu_1^2}{2\mu_1}
\end{array}
\right]](/latexrender/pictures/21f0c180415c34328ed0c4ae1ab44493.png)
Obrigado.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por DanielFerreira » Sáb Jun 29, 2013 11:00
Caro Russman,
também acho que não, mas não estou muito certo!
- quando os elementos da matriz são nº reais, a matriz autoadjunta é equivalente a matriz simétrica (igual a sua transposta);
- quando os elementos da matriz são nº complexos, a matriz autoadjunta é igual a matriz transposta conjugada.
Conclusão: se os elementos da matriz em questão forem reais, então ela não é autoadjunta; mas, se forem complexos teríamos que descobrir a parte imaginária e a parte real para concluir o exercício.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Russman » Sáb Jun 29, 2013 19:12
Obrigado, amigo. Penso da mesma forma. Os elementos são todos reais.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- identificação de uma cônica
por Danilo » Qua Jan 16, 2013 10:16
- 1 Respostas
- 1824 Exibições
- Última mensagem por young_jedi

Qua Jan 16, 2013 16:21
Geometria Analítica
-
- Identificação por partes e por substituição
por lufer17 » Qui Out 25, 2018 21:26
- 1 Respostas
- 5493 Exibições
- Última mensagem por Gebe

Sex Out 26, 2018 05:31
Cálculo: Limites, Derivadas e Integrais
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 7158 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- [Matriz]- inversa de uma matriz
por Ana_Rodrigues » Seg Mar 26, 2012 08:54
- 2 Respostas
- 3569 Exibições
- Última mensagem por Ana_Rodrigues

Seg Mar 26, 2012 18:05
Matrizes e Determinantes
-
- [MATRIZ]Determinante da Matriz 4x4
por LAZAROTTI » Qui Mai 03, 2012 22:33
- 1 Respostas
- 6724 Exibições
- Última mensagem por LuizAquino

Sex Mai 11, 2012 08:00
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.