• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[maximos e minimos] Problemas de minimos e maximos

[maximos e minimos] Problemas de minimos e maximos

Mensagempor amigao » Seg Jun 24, 2013 22:28

Não consegui fazer. Como começo.

Considere a curva y=1-x^2 , 0\leq x \leq1. Traçar uma tangente a curva tal que a area do triangulo que ela forma com os eixos coordenados seja minima.

agradeço.
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [maximos e minimos] Problemas de minimos e maximos

Mensagempor young_jedi » Ter Jun 25, 2013 17:49

primeiro calculando a derivada pra achar o coeficiente angular da reta tangente temos

f'(x)=-2x

vamos supor que a reta seja tangente a parábola em um ponto x=a sendo assim o coeficiente sera

-2a

e

y=1-a^2

portanto a equação da reta sera

\frac{y-(1-a^2)}{x-a}=-2a

y=-2a(x-a)+1-a^2

y=-2ax+a^2+1

agora encontrando os pontos onde ela cruza nos eixos

y_0=-2a.0+a^2+1

y_0=a^2+1

e

0=-2ax_0+a^2+1

x_0=\frac{a^2+1}{2a}

a área sera dada por

A=\frac{x_0.y_0}{2}=\frac{(1+a^2)(1+a^2)}{4a}=\frac{(1+a^2)^2}{4a}

derivando com relação a a para encontra o valor de máximo

A'=\frac{4a(1+a^2)}{4a}-\frac{(1+a^2)^2}{4a^2}


A'=\frac{3a^4+2a^2-1}{4a^2}=0

portanto

3a^4+2a^2-1=0

dai tiramos

a^2=\frac{1}{3}

a=\pm\frac{1}{\sqrt3}

com isso você determina a reta
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59