por KleinIll » Qui Jun 20, 2013 17:52
Exercício: Uma carga elétrica é distribuída sobre uma placa
![R = \left[ \left(r,\theta) \right/ 0\leq\theta\leq\frac{\pi}{4}; 1\leq r\leq 2 \right] R = \left[ \left(r,\theta) \right/ 0\leq\theta\leq\frac{\pi}{4}; 1\leq r\leq 2 \right]](/latexrender/pictures/fa1dc8a87ad8afee5c25f16c218c8805.png)
. A densidade de carga é de

(medida em Coulombs por metro quadrado). Qual é a carga total da placa?
Sendo

e

Montei a integral dessa forma:

Porém, não consigo resolver o problema devida a equação de densidade de carga elétrica, que é dada por arco-tangente.
Alguém pode ajudar?
Obrigado.
??? ?? ? ????, ? ? ??????.
-

KleinIll
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Out 31, 2012 14:17
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: formado
por young_jedi » Qui Jun 20, 2013 22:05
amigo, nos temos que

é so substituir na integral
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por KleinIll » Sex Jun 21, 2013 01:31
Obrigado. Eu só quero pedir mais uma coisa, caso não for incomodo, pode demonstrar ou apresentar os argumentos para que tg-¹(tgx) = x?
Edição: desconsidere, já esclareci.
??? ?? ? ????, ? ? ??????.
-

KleinIll
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Out 31, 2012 14:17
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: formado
por Jhenrique » Sex Jun 21, 2013 17:37
Tome como exemplo a equação y = x
Pode-se multiplicá-la por x, assim:
y/x = x/x
e terá:
y/x = 1
A ideia é análoga para y = f(x)
f?¹(y) = f?¹(f(x)) (a função inversa (f?¹) é aplicada na igualdade)
e resulta em:
f¹(y) = x
No seu caso, tg?¹(x) = arctg(x) = arco cuja tangente é x
fica assim:
arctg(tg(x)) = x
É como se as funções tg e arctg se cancelassem, da mesma forma quando adicionamos certo valor k em x e daí subtraimos esse mesmo valor k de x, ou seja, x + k - k = x.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por KleinIll » Sex Jun 21, 2013 19:18
Obrigado, Jhenrique.
Eu entendi quando pensei na própria função das funções dos arcos, que é retornar um ângulo a partir da relação trigonométrica correspondente, ou seja, se seno de 30º é 1/2, arcoseno de 1/2 é 30º.
??? ?? ? ????, ? ? ??????.
-

KleinIll
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Out 31, 2012 14:17
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: formado
por Jhenrique » Sex Jun 21, 2013 22:46
Exatamente!
Vc pega o caminho da ida e daí em seguida o da volta...
no final das contas vc não sai do lugar... xD
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por KleinIll » Sáb Jun 22, 2013 03:22
huahuahuahuahuahuahuahua vdd xD
??? ?? ? ????, ? ? ??????.
-

KleinIll
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Out 31, 2012 14:17
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral dupla
por DanielFerreira » Sex Mar 16, 2012 23:56
- 2 Respostas
- 2726 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 17, 2012 19:11
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 2
por DanielFerreira » Dom Mar 18, 2012 12:44
- 5 Respostas
- 3944 Exibições
- Última mensagem por DanielFerreira

Sex Mar 23, 2012 22:34
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 4
por DanielFerreira » Sex Abr 06, 2012 19:49
- 4 Respostas
- 2941 Exibições
- Última mensagem por DanielFerreira

Sex Abr 06, 2012 21:05
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 5
por DanielFerreira » Sex Abr 06, 2012 20:00
- 2 Respostas
- 1793 Exibições
- Última mensagem por DanielFerreira

Sex Abr 06, 2012 20:16
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 6
por DanielFerreira » Sáb Abr 14, 2012 22:54
- 1 Respostas
- 1511 Exibições
- Última mensagem por LuizAquino

Dom Abr 15, 2012 23:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.