por Man Utd » Sáb Jun 15, 2013 11:03
é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?
nesta função |x^{3}-x| (vide o gráfico:
http://www.wolframalpha.com/input/?i=ab ... 83%29-x%29 todas as raízes encontram-se bicos).
mais nesta outra função |x^{3}-x^{2}-2x|(gráfico:
http://www.wolframalpha.com/input/?i=ab ... 2%29-2x%29 )não acontecem com todas as raízes e somente uma.
Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos?ou existe um jeito mais eficaz?
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por e8group » Sáb Jun 15, 2013 13:24
Man Utd escreveu:é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?
nesta função |x^{3}-x| (vide o gráfico:
http://www.wolframalpha.com/input/?i=ab ... 83%29-x%29 todas as raízes encontram-se bicos).
A função não é diferenciável nestes pontos ,segue de imediato da definição ,pois as derivadas laterias diferem .
SIm , em uma destas raízes ,as derivadas laterias são iguais o que implica a função diferenciável neste ponto .
Man Utd escreveu:Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos?ou existe um jeito mais eficaz?
Tome cuidado ,esta analise leva você dizer que as funções cujo gráfico não apresenta "bicos " é diferenciável ,isto não é verdade , por exemplo ,
![f(x) = \sqrt[3]{x} f(x) = \sqrt[3]{x}](/latexrender/pictures/ac64ffeed293f17398e36ce96a633821.png)
não é derivável em x= 0 , o limite das retas tangente a função neste ponto é o próprio

, o coeficiente angular desta reta vai

quado

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Man Utd » Sáb Jun 15, 2013 20:10
eu tenho um exercicio assim:
Construa uma função f: R-R que seja contínua em R e derivavél em todos os pontos exceto em -1,0 e 1.
a resolução apresentada a mim foi:
(x+1).x.(x-1)----decomposição de polinomios.
x^{3}-x, então foi colocado em módulo------|x^{3}-x|,com isso as raízes apresentaram bicos na função(conforme wolfram na 1° postagem).
dúvida:Isso sempre é válido?digo uma função em módulo não vai ter derivada nos pontos que são as raízes?
att,
obrigado pela atenção.
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por e8group » Sáb Jun 15, 2013 21:26
Você também pode pensar em 3 funções contínuas em toda a reta satisfazendo a (*) diferenciabilidade em todos os pontos exceto -1,0,1 . Logo , a soma destas funções contínuas fornecerá uma função contínua satisfazendo (*) .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Man Utd » Dom Jun 16, 2013 10:25
vlw santhiago.

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por LuizAquino » Dom Jun 16, 2013 11:24
Man Utd escreveu:é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?
Nem sempre é correto afirmar isso.
Por exemplo, x = 0 é uma raiz da função definida por

, entretanto a função não tem bico em x = 0. Analise o gráfico desta função representado abaixo.

- figura1.png (8.93 KiB) Exibido 7244 vezes
Errado. Na função definida por

temos bicos em todas as raízes. Para verificar isso, confira os limites abaixo (o cálculo deles fica como exercício para você):






Veja também o gráfico desta função representado abaixo.

- figura2.png (11.88 KiB) Exibido 7244 vezes
Man Utd escreveu:Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos? ou existe um jeito mais eficaz?
Você pode calcular a derivada da função e analisar onde ela é descontínua. Entretanto, dependendo do caso é mais simples construir logo o gráfico.
Man Utd escreveu:eu tenho um exercicio assim:
Construa uma função f: R-R que seja contínua em R e derivavél em todos os pontos exceto em -1,0 e 1.
a resolução apresentada a mim foi:
(x+1).x.(x-1)----decomposição de polinomios.
x^{3}-x, então foi colocado em módulo------|x^{3}-x|,com isso as raízes apresentaram bicos na função(conforme wolfram na 1° postagem).
dúvida:Isso sempre é válido?digo uma função em módulo não vai ter derivada nos pontos que são as raízes?
att,
Nem sempre isso é válido, como ilustra o exemplo exibido no início deste texto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada de uma função modular
por Man Utd » Dom Jul 14, 2013 23:45
- 5 Respostas
- 14811 Exibições
- Última mensagem por Man Utd

Seg Jul 15, 2013 23:55
Cálculo: Limites, Derivadas e Integrais
-
- Função Modular - dúvida
por jamiel » Qui Abr 28, 2011 13:11
- 18 Respostas
- 14790 Exibições
- Última mensagem por jamiel

Qui Mai 05, 2011 14:08
Funções
-
- Função modular - Dúvida
por Danilo » Dom Mar 10, 2013 15:50
- 1 Respostas
- 1379 Exibições
- Última mensagem por e8group

Dom Mar 10, 2013 16:49
Funções
-
- [Função modular] Dúvida com relação a raízes
por exburro » Sáb Mar 31, 2012 01:23
- 1 Respostas
- 2421 Exibições
- Última mensagem por LuizAquino

Sex Abr 06, 2012 12:40
Funções
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7035 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.