• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra linear

algebra linear

Mensagempor junior oliveira » Sex Jun 14, 2013 17:07

Dizemos que uma matriz A é simétrica se A^t = A e que A é antissimétrica se
At = -A. Mostre que
a. Se Amxn é uma matriz qualquer, então as matrizes Bnxn = A^t.A e Cmm = AA^t
são simétricas;
b. Se A é uma matriz quadrada de ordem n, então as matrizes B = 1/2(A+A^t)
e C = 1/2 (A - At) são, respectivamente, simétrica e antissimétrica;
c. Usando o item anterior, mostre que toda matriz pode ser escrita de forma única
como soma de uma matriz simétrica com uma antissimétrica;
d. Mostre que a única matriz que é, simultaneamente, simétrica e antissimétrica é a
matriz nula.
passo a passo em gente, valeu
junior oliveira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 30, 2013 08:10
Formação Escolar: GRADUAÇÃO
Área/Curso: lic.fisica
Andamento: cursando

Re: algebra linear

Mensagempor e8group » Sex Jun 14, 2013 20:15

O que você tentou ?

(a) Deve mostrar que B^t = B ; C^t = C .Para isto,note que :


[A^t\cdot A]_{ij} = \sum_{k=1}^{n}[A^t]_{ik}[A]_{kj} para todoi =1,\hdots, m ;j =1,\hdots, n . Observando , [A^t]_{ik}[A]_{kj} = [A]_{ki}[A^t]_{jk} e como produtos de números são comutativos ,você pode concluir que [A]_{ki}[A^t]_{jk} = [A^t]_{jk} \cdot [A]_{ki} .Logo , \sum_{k=1}^{n}[A^t]_{ik}[A]_{kj}  = \sum_{k=1}^{n}[A^t]_{jk} \cdot [A]_{ki} = [B]_{ji} para todoi =1,\hdots, m ;j =1,\hdots, n . A outra questão é análoga .


(b) Basta utilizar a comutatividade da adição e comparar o resultado com B^t e na outra matriz ,evidencie -1 e compare com - C^t .

(c) Basta somar elas e mostrar que se pede no enunciado .

(d) Seja S , A \subset {M_{n\times n}(\mathbb{R})} ,respectivamente ,o conjunto das matrizes simétricas e anti-simétricas .Basta mostra que S\cap A = \{O_{M_{n\times n}(\mathbb{R})}\} . Onde : O_{M_{n\times n}(\mathbb{R}) é o vetor nulo do conjunto das matrizes n\times n .

Comente as dúvidas .

Observação :Post apenas uma dúvida por tópico na próxima vez ,certo ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.