Dizemos que uma matriz A é simétrica se A^t = A e que A é antissimétrica se
At = -A. Mostre que
a. Se Amxn é uma matriz qualquer, então as matrizes Bnxn = A^t.A e Cmm = AA^t
são simétricas;
b. Se A é uma matriz quadrada de ordem n, então as matrizes B = 1/2(A+A^t)
e C = 1/2 (A - At) são, respectivamente, simétrica e antissimétrica;
c. Usando o item anterior, mostre que toda matriz pode ser escrita de forma única
como soma de uma matriz simétrica com uma antissimétrica;
d. Mostre que a única matriz que é, simultaneamente, simétrica e antissimétrica é a
matriz nula.
passo a passo em gente, valeu