por Lennon » Sáb Jun 08, 2013 02:24
Olá pessoal, boa noite.
Esta é minha primeira mensagem, portanto desculpe-me se porventura eu infringir alguma regra de postagem no fórum - mesmo após ter lido as regras -, enfim.
Minha dúvida é de um exercício do Guidorizzi Vol.01:
Desenhe o conjunto A dado e calcule a área:
A é o conjunto do plano limitado pelos gráficos de

, com

.
Consegui desenhar o gráfico e tentei desenvolver assim:

Desenvolvendo a primeira:
![\left[\frac{{x}^{4}}{4}-\frac{{x}^{2}}{2}+\frac{cos\pi x}{\pi}\right] \left[\frac{{x}^{4}}{4}-\frac{{x}^{2}}{2}+\frac{cos\pi x}{\pi}\right]](/latexrender/pictures/e06258069399da1b4220c7c3eef5f633.png)
de -1 a 0. =

Desenvolvendo a segunda:
![\left[\frac{-cos\pi x}{\pi}-\frac{{x}^{4}}{4}+\frac{{x}^{2}}{2} \right] \left[\frac{-cos\pi x}{\pi}-\frac{{x}^{4}}{4}+\frac{{x}^{2}}{2} \right]](/latexrender/pictures/bc577c9a15265ad4913de500f86e5455.png)
de 0 a 1. =

Somando as duas:

.
Mas no gabarito consta como:

Em qual passagem eu errei?
-
Lennon
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mai 12, 2013 17:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Lennon » Dom Jun 09, 2013 22:05
Verdade irmão.
Eu estava usando

e na verdade é = -1.
-
Lennon
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mai 12, 2013 17:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral - Cálculo de áreas
por pinkfluor » Qui Jul 21, 2011 11:38
- 3 Respostas
- 2909 Exibições
- Última mensagem por pinkfluor

Qui Jul 21, 2011 17:21
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Cálculo de áreas
por AlbertoAM » Ter Jun 28, 2011 00:25
- 5 Respostas
- 6586 Exibições
- Última mensagem por AlbertoAM

Qua Jun 29, 2011 20:44
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo de Áreas com Integral] Duvida sobre como começar
por effting » Ter Out 09, 2012 13:00
- 1 Respostas
- 1893 Exibições
- Última mensagem por effting

Ter Out 09, 2012 14:44
Cálculo: Limites, Derivadas e Integrais
-
- Integral - áreas
por Danilo » Sáb Nov 09, 2013 18:42
- 1 Respostas
- 2127 Exibições
- Última mensagem por e8group

Sex Nov 15, 2013 11:44
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Áreas
por Danilo » Sex Nov 15, 2013 19:03
- 2 Respostas
- 3522 Exibições
- Última mensagem por Man Utd

Qui Nov 21, 2013 17:20
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.