• Anúncio Global
    Respostas
    Exibições
    Última mensagem

FUNÇÕES

FUNÇÕES

Mensagempor Direito » Sáb Jun 01, 2013 18:49

Direito
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 13, 2013 00:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: FUNÇÕES

Mensagempor e8group » Dom Jun 02, 2013 15:07

Com a relação que você postou , podemos determinar f(x) e f(x^{-1}) da seguinte forma .

Suponha \gamma \neq 0 ,então :


\begin{cases}  2f(\gamma) - f(\gamma^{-1}) = \gamma^2 \\  2f(\gamma^{-1}) - f(\gamma) = \gamma^{-2} \end{cases} (Atenção ! (\gamma^{-1})^{-1} =\gamma ) .

Multiplicando a 2ª equação por 2 e somando na primeira eq. obtemos ,

2f(\gamma) - f(\gamma^{-1}) + 2[2f(\gamma^{-1}) - f(\gamma)] = \gamma^{2} + 2\gamma^{-2} \implies 3 f(\gamma^{-1}) =  \gamma^{2} + 2\gamma^{-2}  \implies   \boxed{f(\gamma^{-1}) = \frac{\gamma^{2} + 2\gamma^{-2} }{3}} .

Substituindo-se f(\gamma^{-1}) na primeira ou segunda equação você encontra f(\gamma) . Depois basta fazer \gamma = 2 ou \gamma = 2^{-1} = 1/2 .

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: FUNÇÕES

Mensagempor e8group » Dom Jun 02, 2013 15:41

Ou melhor , multiplique a primeira equação por 2 e soma a segunda obtendo então :

f(\gamma) = \frac{\gamma^{-2} +2 \gamma^2}{3} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)