• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Diferenciação Logarítmica

Diferenciação Logarítmica

Mensagempor Man Utd » Dom Mai 26, 2013 16:02

Calcule a derivada da seguinte função f(x)=x^{x^{x}}.

comecei assim:
\\\\ f(x)=e^{ln x^{x^{x}}} \\\\ f(x)=e^{x^{x}*ln x} \\\\ \frac{dy}{dx}=\frac{d(e^{x^{x}*ln x})}{dx} \\\\ \frac{dy}{dx}=\frac{d(e^{x^{x}*ln x})}{du}*\frac{d(x^{x}*ln x)}{dx} \\\\ \frac{dy}{dx}=e^{x^{x}*ln x}*((x^{x}(lnx+1)).lnx+x^{x}*\frac{1}{x}) \\\\ \frac{dy}{dx}=x^{{x}^{x}}*(x^{x}(lnx+1).lnx+x^{x-1})

é isso? se não alguém pode me dar dicas? :-D
obrigado desde já.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Diferenciação Logarítmica

Mensagempor e8group » Dom Mai 26, 2013 16:26

Considere : h(x) = x^x , exp(x) = e^x .Temos : f(x) = (h\circ h)(x) .Assim , pela regra da cadeia , f'(x) = ([h'\circ h] \cdot h')(x) = \frac{d h(h(x))}{d(h(x))} \cdot \frac{dh(x)}{dx} . Como h(x) = x^x = e^{ln(x^x)} = epx(x\cdot ln(x)) .Novamente pela regra da cadeia ,temos : h'(x) = exp'(x\cdot ln(x)) \cdot (x\cdot ln(x))' que devido a regra do produto , h'(x) =  exp(x\cdot ln(x)) \cdot (x' \cdot ln(x) + x\cdot ln'(x)) = exp(ln(x^x)) \cdot (ln(x) + 1) = x^x \cdot (ln(x) +1) .

(Claro que está implícito x> 0 ) .

Lembrando que : f'(x) = ([h'\circ h] \cdot h')(x) = h'(h(x)) \cdot h'(x) .Basta substituir o resultado acima .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Diferenciação Logarítmica

Mensagempor Man Utd » Dom Mai 26, 2013 17:50

olá santhiago,eu não posso deixar do jeito que está?(Verifiquei a resposta no wolfram: http://www.wolframalpha.com/input/?i=de ... x%5Ex%29+# )
obrigado pela paciência.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Diferenciação Logarítmica

Mensagempor e8group » Dom Mai 26, 2013 19:00

Pode sim ,uma vez que elas são equivalentes .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}