• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como encontrar o valor de b?

Como encontrar o valor de b?

Mensagempor Cleyson007 » Sáb Mai 25, 2013 16:55

Sabendo-se que 3+i é raiz de p(x)=3x^2+(a+1)x+30 e que b é raiz de q(x)=5x^6-95x^5+x^2-18x+a, com a,b\in\,Z e b>1, então a razão \frac{a}{b} vale:

a) -2
b) -1
c) 0
d) 1
e) 2

Resolvendo p(x) aplicando 3+i como raiz, encontrei a = -19.

Agora a dúvida está em resolver a equação q(x) = 5b^6 - 95b^5 + b² - 18b - 19 = 0

Como resolver a equação acima e encontrar o valor de b?

Se alguém puder ajudar, agradeço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Como encontrar o valor de b?

Mensagempor e8group » Sáb Mai 25, 2013 18:59

Utilizando que a = -19 ,temos que q(x) pode ser reescrito como ,


q(x) = x(5x^5-95x^4 +x - 18) - 19  =  x(5x^4[x-19] + x - 19 + 1) -19 = x((x-19)(5x^4+1)+1) - 19


\implies q(x) = x((x-19)(5x^4+1)+1) - 19 .


Assim, dado r > 0 suficiente pequeno ,podemos observar que para quaisquer x \in (19-r,19) tem-se q(x) > 0 eq(x) < 0 para x \in (19,19+r) ,experimente calcular q(18.9) , q(19.1) .Logo, tem-se b = 19 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.