Mantendo-se o intuito da ajuda educativa, espaço para recomendações de sites e outras referências, exceto anúncio de divulgação com interesse comercial.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por Molina » Sex Mai 24, 2013 19:34
Peruano resolve problema matemático indecifrável havia 271 anosPesquisador comprovou a conjectura fraca de Goldbach, considerada um dos problemas matemáticos mais difíceis da história
O matemático peruano Harald Andrés Helfgott conseguiu demonstrar a conjectura fraca de Goldbach, um problema da teoria dos números que ninguém havia conseguido resolver desde que foi proposta, em 1742. O responsável pela façanha tem 35 anos e vive em Paris, onde trabalha para o Centro Nacional para a Pesquisa Científica (CNRS, na sigla em francês). A conjectura afirma que "todo número ímpar maior que 5 pode ser expresso como soma de três números primos".
O problema, proposto por Christian Goldbach há 271 anos, se converteu em dor de cabeça para os melhores matemáticos dos últimos três séculos. Desde 1923, com o esforço de nomes como G. H. Hardy e John Edensor Littlewood, foram obtidos avanços importantes para a comprovação da conjectura, porém ela ainda não havia sido demonstrada de maneira incondicional. Em 1937, o teorema de Vinogradov mostrou que qualquer número ímpar suficientemente grande pode ser representado como a soma de três números primos. A definição de "suficientemente grande", porém, ficou pendente.
Helfgott publicou, em 2012 e neste ano, dois trabalhos acadêmicos reivindicando a melhoria das estimações dos arcos maiores e menores - o suficiente para demonstrar definitivamente a conjectura fraca de Goldbach. O estudo pode ser consultado, em inglês,
neste link.
No entanto, essa pesquisa dificilmente contribuirá para a comprovação da conjectura "forte" de Goldbach - um dos problemas mais antigos não resolvidos da matemática e considerada por muitos o problema mais difícil da história dessa ciência. De acordo com o próprio Helfgott, a conjetura de Goldbach "pode não ser resolvida nas nossas vidas". A versão forte postula que todo número par maior que 2 pode ser expressado pela soma de dois primos.
O matemático peruano estudou nas prestigiadas universidades americanas de Princeton e Yale e recebeu diversos prêmios por suas contribuições à matemática.
Fonte: Porta Terra
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Rafael16 » Sex Mai 24, 2013 20:58
Einstein da matemática! Merece o prêmio nobel!
271 anos é o tempo que eu devo levar para formar em matemática hehe.
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por Jhenrique » Sex Mai 24, 2013 21:15
Fantástico!
Fico imaginando como a matemática deve fluir livremente na mente desses caras...
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Molina » Sex Mai 24, 2013 21:55
Rafael16 escreveu:Einstein da matemática! Merece o prêmio nobel!
271 anos é o tempo que eu devo levar para formar em matemática hehe.
Infelizmente não há Nobel em matemática.
Jhenrique escreveu:Fantástico!
Fico imaginando como a matemática deve fluir livremente na mente desses caras...
Você chegou a ver o artigo que ele escreveu? Deu um nó na cabeça só nas primeiras páginas.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Rafael16 » Sáb Mai 25, 2013 00:15
Molina escreveu:Infelizmente não há Nobel em matemática.
Caramba, que injustiça! Há prêmio para física, química, medicina... mas não para matemática, que é importante tanto quanto as outras ciências, e inclusive é a base de muitas delas.
Molina escreveu:Jhenrique escreveu:Fantástico!
Fico imaginando como a matemática deve fluir livremente na mente desses caras...
Você chegou a ver o artigo que ele escreveu? Deu um nó na cabeça só nas primeiras páginas.
Só mais de 100 páginas de pura loucura...hehe
Se você, que é matemático, ficou confuso, imagina eu?

-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por Jhenrique » Sáb Mai 25, 2013 15:04
Vi sim... faz eu me sentir tão inferior... :/ Ou o cara que é muito poderoso... xD
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Sites Recomendados / Outras Indicações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- questao resolvida
por adauto martins » Qui Mar 19, 2020 18:54
- 3 Respostas
- 3334 Exibições
- Última mensagem por adauto martins

Dom Abr 05, 2020 11:10
Álgebra Elementar
-
- questao resolvida
por adauto martins » Seg Mai 18, 2020 16:34
- 2 Respostas
- 8059 Exibições
- Última mensagem por adauto martins

Seg Mai 25, 2020 16:34
Cálculo: Limites, Derivadas e Integrais
-
- Integral definida[Resolvida]
por procyon » Ter Nov 01, 2011 00:34
- 3 Respostas
- 3384 Exibições
- Última mensagem por LuizAquino

Ter Nov 01, 2011 22:25
Cálculo: Limites, Derivadas e Integrais
-
- Questão enviada por e-mail (Resolvida)
por Molina » Qui Jun 11, 2009 20:20
- 0 Respostas
- 2681 Exibições
- Última mensagem por Molina

Qui Jun 11, 2009 20:20
Sistemas de Equações
-
- Matriz resolvida por dois métodos
por apotema2010 » Dom Abr 17, 2011 10:23
- 8 Respostas
- 6275 Exibições
- Última mensagem por apotema2010

Ter Abr 19, 2011 09:42
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.