• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(G1 - ifsp)

(G1 - ifsp)

Mensagempor Maria Livia » Sáb Mai 18, 2013 22:39

Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas cores é
Maria Livia
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 79
Registrado em: Seg Ago 13, 2012 13:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (G1 - ifsp)

Mensagempor Rafael16 » Sáb Mai 18, 2013 23:18

Boa noite Maria Livia!

Sem título.png
Sem título.png (3.43 KiB) Exibido 15082 vezes


Temos 5 cores.
Em R1 temos então 5 possibilidades. Já em R2 vamos ter só 4, pois em R1 vamos escolher uma cor e vai nos restar 4, já que os retângulos devem ser pintados com duas cores e retângulos de mesmo lado não podem ter a mesma cor.
Em R3 vamos ter 1 possibilidade, que é a cor escolhida em R1, e R4 também vamos ter somente 1 possibilidade, que é a cor escolhida em R2. Ou seja, temos que pintar o retângulo "cor-sim cor-não" somente com duas cores.

R1 = 5 possibilidades
R2 = 4 possibilidades
R3 = 1 possibilidade
R4 = 1 possibilidade

R1 * R2 * R3 * R4 = 20

Espero ter ajudado!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: (G1 - ifsp)

Mensagempor Maria Livia » Dom Mai 19, 2013 00:23

obg!
Maria Livia
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 79
Registrado em: Seg Ago 13, 2012 13:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (G1 - ifsp)

Mensagempor anaflaviasouza » Sex Mar 14, 2014 17:27

Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas coresé?

tive um pouco de dificuldade em entender a resolução apresentada aqui, porque utilizar as 5 cores se no final do exercício ele deixou definido que os quatro retângulos fossem pintados com apenas duas cores?
anaflaviasouza
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 14, 2014 17:18
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: meio ambiente
Andamento: formado

Re: (G1 - ifsp)

Mensagempor anaflaviasouza » Sex Mar 14, 2014 18:23

anaflaviasouza escreveu:Dispõe-se de cinco cores para colorir o retângulo que está dividido em quatro outros retângulos menores,. R1, R2, R3 e R4, de maneira que retângulos com um lado comum não devem ser coloridos com a mesma cor. O número de modos diferentes de colorir os quatro retângulos com apenas duas coresé?

tive um pouco de dificuldade em entender a resolução apresentada aqui, porque utilizar as 5 cores se no final do exercício ele deixou definido que os quatro retângulos fossem pintados com apenas duas cores?
anaflaviasouza
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 14, 2014 17:18
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: meio ambiente
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59