• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Demonstração de um limite

[Limite] Demonstração de um limite

Mensagempor Fabio Marquez » Ter Mai 14, 2013 11:30

Olá pessoal, tudo bem? Então, estou com um problema para demonstrar que \lim_{x\rightarrow0} \frac{a^x-1}{x} = ln a. Eu comecei fazendo u=a^x-1 e achei x = \frac{lnu+1}{lna}, mas não consegui avançar até ln a, como posso provar isso? (lnu e lna são logaritmos naturais)
Fabio Marquez
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Abr 20, 2013 20:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [Limite] Demonstração de um limite

Mensagempor Man Utd » Ter Mai 14, 2013 21:27

olá.
usando substituição:
\\\\ u=a^{x}-1 \\\\ a^{x}=u+1 \\\\ ln a^{x}=ln(1+u) \\\\ x.ln a=ln(1+u) \\\\ x=\frac{ln(1+u)}{ln a}

agora aplicando no limite:
\\\\ \lim_{u\rightarrow 0}\frac{u}{\frac{ln(1+u)}{lna}} \\\\\\ \lim_{u\rightarrow 0}\frac{lna*u}{ln(1+u)} \\\\\\ \lim_{u\rightarrow 0}{\frac{lna*u:u}{ln(1+u):u} \Rightarrow \lim_{u\rightarrow 0}\frac{lna}{\frac{ln(1+u)}{u}} \Rightarrow \lim_{u\rightarrow 0}\frac{lna}{\frac{1}{u}*ln(1+u)}}
\\\\ \lim_{u\rightarrow 0}\frac{lna}{ln(1+u)^{\frac{1}{u}}}} \\\\\\ \frac{\lim_{u\rightarrow 0}lna}{\lim_{ u\rightarrow 0}{ln(1+u)^{\frac{1}{u}}}} \\\\\\ \frac{lna}{ln(\lim_{ u\rightarrow 0}{(1+u)^{\frac{1}{u}})}} \\\\\\ \frac{lna}{lne}=lna
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limite] Demonstração de um limite

Mensagempor Fabio Marquez » Ter Mai 14, 2013 23:55

Muuitíssimo obrigado pela explicação!
Fabio Marquez
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Abr 20, 2013 20:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)