por Fabio Marquez » Ter Mai 14, 2013 11:30
Olá pessoal, tudo bem? Então, estou com um problema para demonstrar que

. Eu comecei fazendo

e achei

, mas não consegui avançar até ln a, como posso provar isso? (lnu e lna são logaritmos naturais)
-
Fabio Marquez
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Abr 20, 2013 20:01
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Man Utd » Ter Mai 14, 2013 21:27
olá.
usando substituição:

agora aplicando no limite:


-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por Fabio Marquez » Ter Mai 14, 2013 23:55
Muuitíssimo obrigado pela explicação!
-
Fabio Marquez
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Abr 20, 2013 20:01
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Demonstração
por Henrique Bueno » Qui Abr 19, 2012 22:36
- 1 Respostas
- 1167 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 23:38
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Ajuda com demonstração
por ghf » Sex Nov 02, 2012 22:31
- 1 Respostas
- 1378 Exibições
- Última mensagem por MarceloFantini

Sex Nov 02, 2012 22:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limite do produto] Dúvida na demonstração
por BlackSabbathRules » Sex Mai 09, 2014 16:56
- 3 Respostas
- 2886 Exibições
- Última mensagem por e8group

Sáb Mai 10, 2014 15:23
Cálculo: Limites, Derivadas e Integrais
-
- limite: demonstração (acho que utiliza teorema do confronto)
por catabluma123 » Qua Fev 10, 2016 21:52
- 1 Respostas
- 1537 Exibições
- Última mensagem por adauto martins

Seg Fev 22, 2016 12:43
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6471 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.