• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ajuda?

ajuda?

Mensagempor Amandatkm » Dom Mai 12, 2013 17:40

Uma pessoa comeu 35
de uma barra de chocolate depois do
almoço e à tarde comeu 34
do que havia sobrado. A fração
que representa a quantidade de chocolate que essa pessoa
comeu é de
(A) 1/10
.
(B) 2/5
.
(C) 3/5
.
(D) 7/10
.
(E) 9/10
Amandatkm
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Ter Mar 12, 2013 12:51
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso técnico em admiistração
Andamento: cursando

Re: ajuda?

Mensagempor Molina » Seg Mai 13, 2013 23:40

Boa noite, Amanda.

Confirme se 35 você quis dizer \frac{3}{5} e 34 você quis dizer \frac{3}{4}.

Fico no aguardo.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: ajuda?

Mensagempor Amandatkm » Ter Mai 14, 2013 10:07

Sim sim :D
isso mesmo.
Amandatkm
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Ter Mar 12, 2013 12:51
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso técnico em admiistração
Andamento: cursando

Re: ajuda?

Mensagempor Molina » Ter Mai 14, 2013 14:09

Boa tarde.

Amandatkm escreveu:Sim sim :D
isso mesmo.


Você precisa perceber que primeiramente ele comeu \frac{3}{5}, logo, sobrou \frac{2}{5}. Desses \frac{2}{5} foram comidos \frac{3}{4}. Ou seja, \frac{3}{4} de \frac{2}{5} é igual a \frac{3}{4} \cdot \frac{2}{5} = \frac{6}{20} = \dfrac{3}{10}.

Ou seja, agora você precisa fazer a soma \frac{3}{5} + \dfrac{3}{10}


Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}