• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aplicações de Derivada - Problemas de Otimização - Socorro!!

Aplicações de Derivada - Problemas de Otimização - Socorro!!

Mensagempor Josi » Ter Nov 03, 2009 17:30

Tenho um trabalho com a questão abaixo:

* Um fio de 12 cm pode ser curvado formando um círculo, dobrado formando um quadrado ou cortado em duas partes fazendo um círculo e um quadrado. Quanto do fio deve ser usado para o círculo para que a área total englobada pela(s) figura(s) seja:
a) máxima?
b) mínima?


Já tentei resolver de várias formas, mas os resultados estão sem lógica, como área negativa, comprimento maior que 12, entre outros... Não sou muito boa com fórmulas geométricas, então se alguém puder me ajudar fico muito grata...
Josi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 10, 2009 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Aplicações de Derivada - Problemas de Otimização - Socorro!!

Mensagempor marciommuniz » Ter Nov 03, 2009 22:30

Olá, procure sobre Máximos e Mínimos de funções.
Basta aplicar primeira e segunda derivada. Deixe aqui seus cálculos, se tiver ainda dúvidas, reposte.
Lembrando que a área do círculo é \pi*r^2
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.