por fernandocez » Qua Mai 08, 2013 18:48
Companheiros venho mais uma vez solicitar a ajuda de vcs. A questão é a seguinte:
No plano cartesiano, a equação x² - 4xy - 5y² = 0 representa:
a) uma hipérbole
b) uma parábola
c) uma elipse
d) duas retas paralelas
e) duas retas concorrentes (resposta do gabarito)
Eu tentei ajuda nos livros de geometria analítica e nenhum exemplo parecido com a situação. Tentei desmenbrar em duas equações e não consegui.
Como faço para reconhecer que essa equação são duas retas concorrentes? Existe um método prático? Ou outro recurso? Agradeço quem puder ajudar.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por e8group » Qua Mai 08, 2013 21:39
Se não me engano geralmente utilizamos mudança de coordenadas para eliminar o termo

.Mas no caso em questão ,podemos fatorar tal equação .Veja :
![x^2 -4xy -5y^2 = (x^2 -4xy -5y^2 ) + 0 = (x^2 -4xy -5y^2 ) + -xy +xy = [x^2 +xy ] + [-4xy -xy -5y^2] = x[x+y] -5y[x+y] = [x+y][x-5y] = 0 \implies \begin{cases} x+y = 0 \\ x -5y = 0 \end{cases} x^2 -4xy -5y^2 = (x^2 -4xy -5y^2 ) + 0 = (x^2 -4xy -5y^2 ) + -xy +xy = [x^2 +xy ] + [-4xy -xy -5y^2] = x[x+y] -5y[x+y] = [x+y][x-5y] = 0 \implies \begin{cases} x+y = 0 \\ x -5y = 0 \end{cases}](/latexrender/pictures/e5a8d89c9037c59525246c9cd999bdb9.png)
.
Tente observar se a interseção é diferente do vazio .Comente as dúvidas .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Qua Mai 08, 2013 22:08
Pensando bem a última implicação não é verdadeira .Como vimos
![(*) x^2-4xy-5y^2 = [x+y][x-5y] = 0 (*) x^2-4xy-5y^2 = [x+y][x-5y] = 0](/latexrender/pictures/193b57cbfbc53f58939fe5fbc67d1159.png)
, portanto

ou

.A equação

é a reunião das retas

e

(se é assim que podemos dizer ) .Para estudar a posição relativa entre as retas ,inicialmente podemos tomar a interseção entre elas ,isto é , resolver aquele sistema que já foi citado .Se

podemos concluir que

são concorrentes ou paralelas coincidentes . Teremos estes dois casos a estudar .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fernandocez » Sex Dez 20, 2013 09:54
Obrigado e feliz natal.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [GEOMETRIA ANALITICA] RETAS CONCORRENTES
por Patrick_GA » Qui Abr 23, 2015 10:52
- 0 Respostas
- 2049 Exibições
- Última mensagem por Patrick_GA

Qui Abr 23, 2015 10:52
Geometria Analítica
-
- Determinar se duas retas são concorrentes, paralelas...
por samra » Ter Mai 08, 2012 12:52
- 2 Respostas
- 5281 Exibições
- Última mensagem por samra

Ter Mai 08, 2012 22:23
Geometria Analítica
-
- [Geometria Plana] Circunferencia tangencida por duas retas
por stuartl » Dom Out 13, 2013 12:04
- 0 Respostas
- 1652 Exibições
- Última mensagem por stuartl

Dom Out 13, 2013 12:04
Geometria Plana
-
- Retas concorrentes
por marquinhoibvb » Qui Jun 05, 2008 22:39
- 1 Respostas
- 10539 Exibições
- Última mensagem por admin

Sex Jun 06, 2008 00:27
Geometria Analítica
-
- Retas Concorrentes
por lsergio_santos » Qui Jun 11, 2015 17:12
- 1 Respostas
- 2593 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:04
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.