• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

[DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

Mensagempor fabriel » Sex Mai 03, 2013 12:59

Oi pessoal to com uma duvida no resultado aqui:
Exercicio: Seja C a curva com parametrização x=e^{-t} , y=e^{2t} ; t\in R determine \frac{dy}{dx} e \frac{{d}^{2}y}{{dx}^{2}}
Eu resolvi da seguinte maneira:

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{{2e}^{2t}}{{-e}^{-t}}

\frac{{d}^{2}y}{{dx}^{2}}=\frac{\frac{d}{dt}\left({2e}^{2t} \right)}{\frac{d}{dt}\left({-e}^{-t} \right)}= \frac{4{e}^{2t}}{{e}^{-t}}={4e}^{3t}

Até ai sem nenhum problema mas veja, se eu tivesse pegado a \frac{dy}{dx}=\frac{{2e}^{2t}}{-{e}^{-t}}=-2{e}^{3t} e logo em seguida derivasse isso olha o que aconteceria

\frac{{d}^{2}y}{{dx}^{2}}= -6{e}^{3t}

Que no caso é diferente do resultado que obtive na primeira resolução da derivada segunda, qual é que esta errada?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

Mensagempor young_jedi » Dom Mai 05, 2013 19:02

você teria que

\frac{d^2y}{dx^2}=\frac{\frac{d}{dt}\left(\frac{2e^{2t}}{-e^{-t}}\right)}{-e^{-t}}

tente concluir e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

Mensagempor fabriel » Seg Mai 06, 2013 01:41

Não entendi muito bem essa passagem
young_jedi escreveu:você teria que

\frac{d^2y}{dx^2}=\frac{\frac{d}{dt}\left(\frac{2e^{2t}}{-e^{-t}}\right)}{-e^{-t}}

tente concluir e comente as duvidas


é muito confusa a derivada de funções dada na forma paramétrica, quando se trata na derivada de 2ª ordem pra frente

Mas se isso for o correto, então a resposta seria: \frac{\frac{{4e}^{2t}}{{e}^{-t}}}{{-e}^{-t}}=-4{e}^{4t}

Que é bem diferente das respostas que obtive antes.
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

Mensagempor young_jedi » Seg Mai 06, 2013 21:55

note que

\frac{d}{dt}\left(\frac{2e^{2t}}{-e^{-t}}\right)=\frac{4e^{2t}}{-e^{-t}}+\frac{2e^{2t}}{-e^{-t}}

=\frac{6e^{2t}}{-e^{-t}}=-6e^{3t}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: