• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Uesb Urgente!!!!

Dúvida Uesb Urgente!!!!

Mensagempor jordyson rocha » Seg Abr 29, 2013 17:16

Considerando-se o quadrado ABCD inscrito na circunferência de equação {(x-1)}^{2}+ {(y+2)}^{2}=5 e A(3,-1),pode-se afirmar que uma equação da reta que contém a diagonal BD é:

01) 3x - 2y - 7
02) 2y + x + 3
03) 2y - x + 5
04) 2x - y = 4
05) 2x + y = 0


Tentei de todos os jeitos mas acabo sempre na resposta errada a 03 . dá uma forcinha ai. muito obrigado.
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvida Uesb Urgente!!!!

Mensagempor young_jedi » Seg Abr 29, 2013 20:49

primeiro vamos encontra a reta a equação da reta que contem a diagonal AC
sendo uma reta do tipo

y=ax+b

temos que ela passa pelo centro da circunferencia portano ela contem os ponos A(3,-1) e O(1,-2)

então temos que

a=\frac{-1-(-2)}{3-1}

a=\frac{1}{2}

portanto a equção é do tipo

y=\frac{1}{2}x+b

como a diagonal BD faz um angulo de 90º com a diagonal AC então ela é do tipo

y=-\frac{1}{a}x+b_2

tente concluir a partir daqui e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Dúvida Uesb Urgente!!!!

Mensagempor jordyson rocha » Qua Mai 15, 2013 09:22

olha eu não estou conseguindo achar o valor de "b" da fórmula tentei de todas maneiras mas não consegui.Preciso de ajuda.Obrigado
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvida Uesb Urgente!!!!

Mensagempor young_jedi » Qua Mai 15, 2013 21:46

dos dados já obtidos sabemos que a reta BD tem equação

y=-2x+b

como ela passa pelo centro da esfera então temos que O(-1,2) é um ponto dela então

2=-2.(-1)+b

b=0

portanto a equação sera

y=-2x

2x+y=0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?