• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Escalonamento de matrizes] Como acho C^-1

[Escalonamento de matrizes] Como acho C^-1

Mensagempor Ronaldobb » Qui Abr 25, 2013 12:38

Bom dia. Passei a manhã inteira tentando escalonar esta matriz:

Matriz C

2---1---(-1)
0---2---1
5---2---(-3)

Números da 1ª linha: 2; 1 e -1
Números da 2ª linha: 0; 2; 1
Números da 3ª linha: 5; 2; -3

OBS: não consegui usar o editor de fórmulas pra matrizes 3x3
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Escalonamento de matrizes] Como acho C^-1

Mensagempor DanielFerreira » Qui Abr 25, 2013 19:18

\\ \begin{pmatrix} 2 & 1 & - 1 \\ 0 & 2 & 1 \\ 5 & 2 & - 3 \end{pmatrix} = \\\\ L_1 \leftarrow \frac{L_1}{2} \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 2 & 1 \\ 5 & 2 & - 3 \end{pmatrix} = \\\\ L_3 \leftarrow - 5 \cdot L_1 + L_3 \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 2 & 1 \\ 0 & - \frac{1}{2} & - \frac{1}{2} \end{pmatrix} = \\\\ L_3 \leftarrow 4 \cdot L_3 + L_2 \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 2 & 1 \\ 0 & 0 & - 1 \end{pmatrix} =

\\ L_2 \leftarrow \frac{L_2}{2} \\\\ L_3 \leftarrow - 1 \times L_3 \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} = \\\\ L_2 \leftarrow - \frac{L_3}{2} + L_2 \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\\\ L_1 \leftarrow - \frac{L_2}{2} + L_1 \\\\ \begin{pmatrix} 1 & 0 & - \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} =

\\ L_1 \leftarrow \frac{L_3}{2} + L_1 \\\\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59