• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Escalonamento de matrizes] Como acho C^-1

[Escalonamento de matrizes] Como acho C^-1

Mensagempor Ronaldobb » Qui Abr 25, 2013 12:38

Bom dia. Passei a manhã inteira tentando escalonar esta matriz:

Matriz C

2---1---(-1)
0---2---1
5---2---(-3)

Números da 1ª linha: 2; 1 e -1
Números da 2ª linha: 0; 2; 1
Números da 3ª linha: 5; 2; -3

OBS: não consegui usar o editor de fórmulas pra matrizes 3x3
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Escalonamento de matrizes] Como acho C^-1

Mensagempor DanielFerreira » Qui Abr 25, 2013 19:18

\\ \begin{pmatrix} 2 & 1 & - 1 \\ 0 & 2 & 1 \\ 5 & 2 & - 3 \end{pmatrix} = \\\\ L_1 \leftarrow \frac{L_1}{2} \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 2 & 1 \\ 5 & 2 & - 3 \end{pmatrix} = \\\\ L_3 \leftarrow - 5 \cdot L_1 + L_3 \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 2 & 1 \\ 0 & - \frac{1}{2} & - \frac{1}{2} \end{pmatrix} = \\\\ L_3 \leftarrow 4 \cdot L_3 + L_2 \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 2 & 1 \\ 0 & 0 & - 1 \end{pmatrix} =

\\ L_2 \leftarrow \frac{L_2}{2} \\\\ L_3 \leftarrow - 1 \times L_3 \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} = \\\\ L_2 \leftarrow - \frac{L_3}{2} + L_2 \\\\ \begin{pmatrix} 1 & \frac{1}{2} & - \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\\\ L_1 \leftarrow - \frac{L_2}{2} + L_1 \\\\ \begin{pmatrix} 1 & 0 & - \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} =

\\ L_1 \leftarrow \frac{L_3}{2} + L_1 \\\\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.