por fabriel » Qui Abr 25, 2013 17:43
E ai Pessoal blz?
Então estou em duvida nesse exercicio.
-- Calcular a derivada

da seguinte função definida na forma paramétrica. Para quais valores de t, y' está definida?
Essa é a função dada na forma paramétrica:


e isso para
![t\in\left[0,\frac{\pi}{2} \right] t\in\left[0,\frac{\pi}{2} \right]](/latexrender/pictures/89655ed5c73f7cdac67dc885da565d3c.png)
Calculei a derivada e deu:

A minha duvida é nessa questão, como é que vou colocar

em função de x?
e mesmo se eu conseguir colocar, para quais valores de t, y' está definida, sendo que coloquei

em função de x?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Qui Abr 25, 2013 21:24
Pensei de outra forma :
Pela regra da cadeia ,temos :

.
Mas ,

.
Para

podemos isolar

,

.
Daí ,

(Que é o que vc achou).
Mas pela identidade trigonométrica ,temos

.E como ,

,
resulta

.
Assim ,

.
Se não errei algum cálculo acredito que seja isto .
Obs.: Da forma que vc fez está certo também ,só há um problema no intervalo
![[0,\pi/2] [0,\pi/2]](/latexrender/pictures/6b59bc315c28725e04e9331e71527914.png)
há dois valores que

não está definido .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fabriel » Sex Abr 26, 2013 02:36
Entendo, obrigado!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA
por fabriel » Sex Mai 03, 2013 12:59
- 3 Respostas
- 1892 Exibições
- Última mensagem por young_jedi

Seg Mai 06, 2013 21:55
Cálculo: Limites, Derivadas e Integrais
-
- [Equaçao parametrica] Equacao parametrica com 3 pontos
por spektroos » Dom Mar 17, 2013 21:16
- 0 Respostas
- 1024 Exibições
- Última mensagem por spektroos

Dom Mar 17, 2013 21:16
Geometria Analítica
-
- Paramétrica da reta de um lado de um triangulo
por shantziu » Sáb Set 17, 2011 21:19
- 3 Respostas
- 5085 Exibições
- Última mensagem por Addlink1114

Qui Fev 18, 2016 06:22
Geometria Analítica
-
- AJUDA EQUAÇÃO VETORIAL/PARAMÉTRICA NO PLANO
por Raquel Botura » Sex Nov 09, 2018 11:19
- 1 Respostas
- 8250 Exibições
- Última mensagem por Gebe

Sex Nov 09, 2018 17:13
Geometria Analítica
-
- Função de uma variavel (cartesiana, paramétrica e implícita)
por rhmgh » Dom Ago 12, 2012 21:20
- 3 Respostas
- 1673 Exibições
- Última mensagem por MarceloFantini

Qua Ago 15, 2012 10:27
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.