• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio y=raiz quadrada de x²-4x+3

Domínio y=raiz quadrada de x²-4x+3

Mensagempor virginia » Qui Abr 25, 2013 12:05

Determinar o domínio da função:
y=\sqrt[2]{{x}^{2}-4x+3}
Eu consegui achar como resposta 3 e 1 sendo que não consigo entender porque a resposta do livro é:
(-infinito,1] U [3,+infinito)
Não teria que ser:D: [2,3]
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio y=raiz quadrada de x²-4x+3

Mensagempor DanielFerreira » Qui Abr 25, 2013 17:32

Olá Virgínia,
boa tarde!
Nos Reais, uma raiz de índice par não pode ter radicando negativo. Ou seja, ele deve ser maior ou igual a zero, daí,

\\ x^2 - 4x + 3 \geq 0 \\ (x - 3)(x - 1) \geq 0

Já que encontramos as raízes da equação, façamos o estudo dos sinais!

__+_____(1)____-____(3)_____+______

Associando o sinal de + a \geq, temos como resposta:

S = \left \{ x \in \mathbb{R} / x \leq 1 \cup x \geq 3 \right \}

ou

S = \left ( - \infty, 1 \right ] \cup \left [ 3, \infty \right ]


Espero ter ajudado!

Qualquer dúvida, retorne!

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?