young_jedi escreveu:a função limitada é o seguinte

para qualquer que seja x ou y
então simplificando

ou seja esta função é limitada ao valor 1 esse é o maximo valor que ela assume então no primeiro limite voce tem que

mais temos que

então

poceda de forma semelhante para o outro limite
estava aqui pensando.. como você sabe que a função é limitada superior e inferiormente por 1?
Porque veja..
para x e y diferentes de 0
y² > ou = 0
somando x²..
y² + x² > ou = 0 + x²
dividindo ambos os lados por x²+y²
1 > ou igual

isso nos provou que ela é limitada superiormente (ou seja, é sempre menor do que 1)
ai tentei proceder assim para provar que ela é sempre maior do que -1 também:
|x|² = x²
então

e ai, fiz
=

< ou = 1
<=> -1 < ou igual

< ou igual 1
só que acho que está errada essa minha passagem, pois a desigualdade triangular diz que
|a+b| < ou igual |a|+|b|
ou eu posso fazer isso de passar o módulo para a fração toda, já que está tudo ao quadrado?