• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[transformação linear]

[transformação linear]

Mensagempor carlex28 » Sex Abr 19, 2013 18:40

Seja T:{P}_{1}\rightarrow{R}^{2} a função definida pela fórmula T(p(x))=(p(0),p(1)), onde {P}_{1}={P}_{1}=(x,R)={ax+b;a,b E R}.

a) Encontre T(1-2x)
b)Mostre que T é uma transformação linear
c)Mostre que T é injetora
carlex28
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 19, 2013 18:31
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: [transformação linear]

Mensagempor young_jedi » Sex Abr 19, 2013 21:43

T(1-2x)

temos que p(x)=1-2x

então p(0)=1

e p(1)=-1

portanto

T(1-2x)=(1,-1)

b) pegando duas funções

p_1(x)=ax+b

p_2(x)=cx+d

temos que

T(\alpha.p_1(x)+\beta.p_2(x))=\left(\alpha.p_1(0),\alpha.p_1(1)\right)+\left(\beta.p_2(0),\beta.p_2(1)\right)

T(\alpha.p_1(x)+\beta.p_2(x))=\left(\alpha.b,\alpha.(a+b)\right)+\left(\beta.c,\beta.(c+d)\right)

T(\alpha.p_1(x)+\beta.p_2(x))=\alpha\left(b,a+b\right)+\beta\left(c,c+d\right)

T(\alpha.p_1(x)+\beta.p_2(x))=\alpha.T(p_1(x))+\beta.T(p_2(x))
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [transformação linear]

Mensagempor carlex28 » Seg Abr 22, 2013 09:09

Valeu,e a letra c ? vc temuma noção de como eu poderia estar fazendo?
carlex28
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 19, 2013 18:31
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: [transformação linear]

Mensagempor young_jedi » Seg Abr 22, 2013 12:14

se qualqer p(x)=ax+b

então

T(p(x))=(b,a+b)

para cada par (b,a+b) nos termos um unico p(x)=ax+b, portanto a função é injetora
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?