• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração] Prove

[Fatoração] Prove

Mensagempor chronoss » Sáb Abr 20, 2013 13:10

Dado que a³ + b³ + c³ = (a + b + c)³, prove que para todo numero natura n:

{a}^{2n + 1}\:\,+\,\:{b}^{2n + 1}\,\:+\,\:{c}^{2n + 1}\:= \:(a \:+\:b\:+\:c)^{2n + 1}



A unica ideia que me vem a cabeça é que os números são simétricos ,mas não sei como provar.
chronoss
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Qui Abr 18, 2013 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Fatoração] Prove

Mensagempor e8group » Sáb Abr 20, 2013 14:03

Já tentou provar pelo Principio da Indução Finita ???
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Fatoração] Prove

Mensagempor chronoss » Sáb Abr 20, 2013 14:16

Ainda não estudei o assunto.
chronoss
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Qui Abr 18, 2013 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Fatoração] Prove

Mensagempor young_jedi » Sáb Abr 20, 2013 19:42

desenvolvendo

(a+b+c)^3=a^3+b^3+c^3+3a^2b+3a^2c+3b^2a+3b^2c+3c^2a+3c^2b+6abc

mais como

(a+b+c)^3=a^3+b^3+c^3

3a^2b+3a^2c+3b^2a+3b^2c+3c^2a+3c^2b+6abc=0

a^2b+a^2c+b^2a+b^2c+c^2a+c^2b+2abc=0

ab(a+b+c)+bc(a+b+c)+ac(a+c)=0

b(a+c)(a+b+c)+ac(a+c)=0

(a+c)(ba+b^2+bc+ac)=0

(a+c)(a(b+c)+b(b+c))=0

(a+c)(b+c)(a+b)=0

para que a expressão seja igual a 0 uma das três relações tem que ser satisfeitas

a=-c

ou

b=-c

ou

a=-b

portanto os números abc e são do tipo

(x,y,-y)

tente concluir, comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Fatoração] Prove

Mensagempor chronoss » Sáb Abr 20, 2013 22:30

A conclusão seria que como : a³ + b³ + c³ = ( a + b + c)³ => a = - b ou a = - c ou b= - c ,

implicando que : {(a\:+\:b\:+\:c)}^{2n + 1} \:\:=\:(a\:-\:a\:+\:c)}^{2n + 1}\:=\:{c}^{2n +1} ,

e que {a}^{2n + 1}\:+\:{-a}^{2n+1}\:+\:{c}^{2n+1}\:=\:{c}^{2n+1}



Logo {(a\:+\:b\:+\:c)}^{2n + 1} \:=\:{a}^{2n+1}\:+\:{b}^{2n+1}\:+\:{c}^{2n+1}.

Seria mais ou menos nesse estilo?
chronoss
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Qui Abr 18, 2013 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Fatoração] Prove

Mensagempor young_jedi » Sáb Abr 20, 2013 22:49

Exatamente, é essa linha de pensamento mesmo
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Fatoração] Prove

Mensagempor chronoss » Sáb Abr 20, 2013 23:11

Legal, é a primeira vez que estou lidando com questões que pedem para provar , estou achando meio chato pois conheço poucos atalhos e não sou dos mais pacientes, mas que bom que pelo menos alguma coisa da essência estou entendendo.
chronoss
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Qui Abr 18, 2013 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?