• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Propriedades Operatórias do Limite

Propriedades Operatórias do Limite

Mensagempor J0elKim » Qui Abr 18, 2013 22:55

Oi! Minha dúvida é: quando não posso usar as propriedades operatórias?
Exemplo de um caso em que os resultados (usando e não usando as propriedades) não bateram:


Calcule: lim_{x\to0}\frac{x-tgx}{x+tgx}

Minha resposta usando diretamente as propriedades: (como lim x->0 de x+tgx é diferente de zero) o limite é igual à 0-1/0+1 = -1
Usando a propriedade só depois de abrir as tangentes e simplificar todos os termos por x, o resultado foi 0 (resultado correto pelo gabarito)

Alguem poderia esclarecer a dúvida e me explicar essas situações?

Obrigado
J0elKim
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 18, 2013 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Economia
Andamento: cursando

Re: Propriedades Operatórias do Limite

Mensagempor e8group » Sex Abr 19, 2013 00:08

Neste caso não podemos aplicar uma das regras operatórias de limites ,regra esta do quociente .Pois ,pela propriedade "limite da soma é a soma dos limites ", concluímos que tanto o numerador quanto o denominador tendem a zero quando se aproxima de zero . Logo ,este limite apresenta uma forma indeterminada "0/0" . Devemos manipular a expressão com objetivo de eliminar esta indeterminação .Antes de prosseguir com a solução ,gostaria de ressaltar que \lim_{x\to 0} tan(x)/x = 1 .(Dica : Observe que tan(x)/x = \frac{\dfrac{sin(x)}{cos(x)}}{x} = \frac{sin(x)}{x} \cdot \frac{1}{cos(x)} ;assim ,quando x\to 0 , \frac{sin(x)}{x} \to 1 e 1/cos(x) \to 1 e portanto segue o resultado do limite) .
Visto o resultado do limite acima é fácil ver que o "artifício" que vamos usar p/ sairmos da indeterminação será dividir x -tan(x) e x +tan(x) por x ,desta forma não vamos alterar o resultado e esta operação é valida uma vez que x \neq 0 .Segue então ,

\lim_{x\to0} \frac{x -tan(x)}{x +tan(x)}  = \lim_{x\to0} \frac{\dfrac{x -tan(x)}{x}}{\dfrac{x +tan(x)}{x}}   =  \lim_{x\to0} \frac{1-\dfrac{tan(x)}{x}}{1 +\dfrac{tan(x)}{x}} .Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Propriedades Operatórias do Limite

Mensagempor J0elKim » Dom Abr 21, 2013 19:59

Conclusão... zero =D!

Obrigado por me ajudar achar o erro hahaha
J0elKim
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 18, 2013 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59