• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CN 2004

CN 2004

Mensagempor Georges123 » Dom Mar 24, 2013 16:45

Um número natural N deixa: resto 2 quando dividido por 3; resto 3 quando dividido por 7; e resto 19 quando dividido por 41. Qual é o resto da divisão do número K=(N+1).(N+4).(N+22) por 861?
A)O
B)13
C)19
D) 33
E) 43

Se poder apenas mostrar o caminho e não resolver a questão agradeço. Obg
Georges123
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 15, 2013 10:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: CN 2004

Mensagempor DanielFerreira » Ter Abr 16, 2013 17:14

Olá Georges,
boa tarde!

Sabe-se que: D = d \cdot q + r, com isso, teremos:

\begin{cases} N = 3q' + 2 \\ N = 7q'' + 3 \\ N = 41q''' + 19 \end{cases}

Onde q', q'' e q''' são os respectivos quocientes daquelas divisões.

Vamos substituir cada valor de N (sistema acima) na equação de k e ver no que vai dá?!

Prosseguindo,

\\ k = (N + 1) \cdot (N + 4) \cdot (N + 22) \\\\ k = (3q' + 2  + 1) \cdot (7q'' + 3 + 4) \cdot (41q''' + 19 + 22) \\\\ k = (3q' + 3) \cdot (7q'' + 7) \cdot (41q''' + 41) \\\\ k = 3(q' + 1) \cdot 7(q'' + 1) \cdot 41(q''' + 1) \\\\ k = 861(q' + 1) \cdot (q'' + 1) \cdot (q''' + 1)

Portanto, resto-nos dividir k por 861, daí seque que:

\\ \frac{k}{861} = \\\\\\ \frac{861(q' + 1) \cdot (q'' + 1) \cdot (q''' + 1)}{861} = \\\\\\ \frac{\cancel{861}(q' + 1) \cdot (q'' + 1) \cdot (q''' + 1)}{\cancel{861}} = \\\\ \boxed{(q' + 1) \cdot (q'' + 1) \cdot (q''' + 1)}

Como a divisão é exata, o resto é \boxed{\boxed{\text{zero}}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: CN 2004

Mensagempor Georges123 » Qui Abr 18, 2013 00:43

Obrigado. Deus te abençoe
Georges123
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 15, 2013 10:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}