• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de Área

Cálculo de Área

Mensagempor Lenin » Qui Abr 11, 2013 21:09

(UEFS) O origami é uma técnica japonesa dedobradura de papéis através da qual sepode obter objetos de inúmeras formas.
Para se construir um pássaro através dessatécnica, usou-se uma folha de papel,quadrada, com 2dm de lado, representadana figura 1.
O primeiro passo foi dobrar opapel, fazendo os lados DA e DC doquadrado coincidirem com o segmento DG sobre a diagonal DB desse quadrado,obtendo-se um quadrilátero DEBF, representado na figura 2.
Imagem Imagem
A área doquadrílatero DEBF,em dm², mede:

A) 4\sqrt[2]{2} - 4
B) 8 - 4\sqrt[2]{2}
C) 2\sqrt[2]{2}
D) 1 + \sqrt[2]{2}
E) 2 + 4\sqrt[2]{2}

Eu estou com dúvidas nessa questão..a inicio de conversa, considere a reta EF a base do triângulo hachurado.
Eu sei que, de D a G mede 2dm, chamei a medida de DF e DE de l e a medida de BF e BE de x..eu sei que os triangulos [Unparseable or potentially dangerous latex formula. Error 2 ] (área) e creio eu que a reta DG é 1/2 do diâmetro, e a reta GB é 1/3..
Eu tentei usar realão de quadrilátero *losângulo, mas não consegui achar a medida de EF..se fosse um triângulo equilátero ficava fácil, mas creio eu que não se trata de um triangulo equilátero, ai me compliquei mais ainda. e até agora não achei um jeito de responder essa questão.
Se poderem me dar uma LUZ com ela, agradeço muito.

OBS: DESCULPEM-ME PELO MEU QUADRADO E TRIÂNGULO MAL FEITO
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: Cálculo de Área

Mensagempor young_jedi » Sex Abr 12, 2013 12:21

origami.png
origami.png (3.35 KiB) Exibido 2021 vezes


analisando a figura, nos temos que a hhipotenusa do triangulo menor sera

x^2+x^2=h^2

h=x\sqrt{2}

mais nos temos ainda que

2=x+x\sqrt2

como isso encontramos x e conseguimos calcular as area dos triangulos e com isso a do quadrilatero
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo de Área

Mensagempor Lenin » Sex Abr 12, 2013 21:53

young_jedi escreveu:
origami.png


analisando a figura, nos temos que a hhipotenusa do triangulo menor sera

x^2+x^2=h^2

h=x\sqrt{2}

mais nos temos ainda que

2=x+x\sqrt2

como isso encontramos x e conseguimos calcular as area dos triangulos e com isso a do quadrilatero


Ah brother vlw, nem atentei para o triângulo equilátero..essa fórmula 2=x+x\sqrt2 no caso seria o lado do quadrado? Abração brother
Editado pela última vez por Lenin em Sex Abr 12, 2013 22:20, em um total de 1 vez.
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: Cálculo de Área

Mensagempor young_jedi » Sex Abr 12, 2013 22:20

a hipotenusa do triangulo menor de angulos 45º é igual a x\sqrt2

isso mais x é igual ao lado do quadrado que é 2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?