por Lenin » Qui Abr 11, 2013 21:09
(UEFS) O origami é uma técnica japonesa dedobradura de papéis através da qual sepode obter objetos de inúmeras formas.
Para se construir um pássaro através dessatécnica, usou-se uma folha de papel,quadrada, com 2dm de lado, representadana figura 1.
O primeiro passo foi dobrar opapel, fazendo os lados DA e DC doquadrado coincidirem com o segmento DG sobre a diagonal DB desse quadrado,obtendo-se um quadrilátero DEBF, representado na figura 2.

A área doquadrílatero DEBF,em dm², mede:
A)
![4\sqrt[2]{2} - 4 4\sqrt[2]{2} - 4](/latexrender/pictures/fd5bb1ec5df0932dee2276a5e9fa6d05.png)
B)
![8 - 4\sqrt[2]{2} 8 - 4\sqrt[2]{2}](/latexrender/pictures/93a62d53a9b488f6fcd9ef45688516c6.png)
C)
![2\sqrt[2]{2} 2\sqrt[2]{2}](/latexrender/pictures/ee13a83dd86f943ecf5c04d9e0e519d2.png)
D)
![1 + \sqrt[2]{2} 1 + \sqrt[2]{2}](/latexrender/pictures/646d9a4a75980f4b264d416b9a9e2d95.png)
E)
![2 + 4\sqrt[2]{2} 2 + 4\sqrt[2]{2}](/latexrender/pictures/9bf304f0835697be49658e562d897714.png)
Eu estou com dúvidas nessa questão..a inicio de conversa, considere a reta EF a base do triângulo hachurado.
Eu sei que, de D a G mede 2dm, chamei a medida de DF e DE de

e a medida de BF e BE de

..eu sei que os triangulos [Unparseable or potentially dangerous latex formula. Error 2 ] (área) e creio eu que a reta DG é

do diâmetro, e a reta GB é

..
Eu tentei usar realão de quadrilátero *losângulo, mas não consegui achar a medida de EF..se fosse um triângulo equilátero ficava fácil, mas creio eu que não se trata de um triangulo equilátero, ai me compliquei mais ainda. e até agora não achei um jeito de responder essa questão.
Se poderem me dar uma LUZ com ela, agradeço muito.
OBS: DESCULPEM-ME PELO MEU QUADRADO E TRIÂNGULO MAL FEITO
-
Lenin
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Abr 10, 2013 23:08
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Cursinho
- Andamento: cursando
por young_jedi » Sex Abr 12, 2013 12:21

- origami.png (3.35 KiB) Exibido 2021 vezes
analisando a figura, nos temos que a hhipotenusa do triangulo menor sera


mais nos temos ainda que

como isso encontramos x e conseguimos calcular as area dos triangulos e com isso a do quadrilatero
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Lenin » Sex Abr 12, 2013 21:53
young_jedi escreveu:origami.png
analisando a figura, nos temos que a hhipotenusa do triangulo menor sera


mais nos temos ainda que

como isso encontramos x e conseguimos calcular as area dos triangulos e com isso a do quadrilatero
Ah brother vlw, nem atentei para o triângulo equilátero..essa fórmula

no caso seria o lado do quadrado? Abração brother
Editado pela última vez por
Lenin em Sex Abr 12, 2013 22:20, em um total de 1 vez.
-
Lenin
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Abr 10, 2013 23:08
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Cursinho
- Andamento: cursando
por young_jedi » Sex Abr 12, 2013 22:20
a hipotenusa do triangulo menor de angulos 45º é igual a

isso mais x é igual ao lado do quadrado que é 2
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cálculo de área
por rogerdbest » Qui Ago 05, 2010 17:02
- 1 Respostas
- 2020 Exibições
- Última mensagem por Molina

Qui Ago 05, 2010 18:01
Geometria Plana
-
- calculo de área
por angeloka » Sáb Nov 13, 2010 22:41
- 1 Respostas
- 1870 Exibições
- Última mensagem por MarceloFantini

Dom Nov 14, 2010 00:18
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 17:49
- 2 Respostas
- 2214 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 08:05
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 18:56
- 2 Respostas
- 2278 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 01:00
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de area
por shantziu » Seg Set 05, 2011 16:57
- 1 Respostas
- 1393 Exibições
- Última mensagem por LuizAquino

Seg Set 05, 2011 21:49
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.