• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo de x em função de a, Geometria Plana]

[Cálculo de x em função de a, Geometria Plana]

Mensagempor Lenin » Qui Abr 11, 2013 00:16

(UEFS) Na figura ao lado, ABCD é um quadrado de lado a. A circunferencia de raio x tangencia os lados AB e AD e a semicircunferência de diâmetro CD
Imagem
O valor de x em função de a é:
A) a(3 - \sqrt[2]{3})
B) a(2 - \sqrt[2]{3})
C) a(1 + \sqrt[2]{3})
D) a(2 + \sqrt[2]{3})
E) a(3 + \sqrt[2]{3})

Eu fiz da seguinte maneira: Imagem
onde calculei pitágoras {(a/2 + x)}^{2} = {(a - x)}^{2} + {(a/2 - x)}^{2}
tentei várias vezes e não consegui. A resposta final tem que dar isso: {(x)}^{2} - 4ax + {(a)}^{2} = 0 \rightarrow isolando o x temos x = a(2 - \sqrt[2]{3})..só que não consigo chegar à {(x)}^{2} - 4ax + {(a)}^{2} = 0
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: [Cálculo de x em função de a, Geometria Plana]

Mensagempor young_jedi » Qui Abr 11, 2013 11:46

\left(\frac{a}{2}+x\right)^2=(a-x)^2+\left(\frac{a}{2}-x\right)^2

\frac{a^2}{4}+ax+x^2=a^2-2ax+x^2+\frac{a^2}{4}-ax+x^2

\cancel{\frac{a^2}{4}}+ax+\cancel{x^2}=a^2-2ax+x^2+\cancel{\frac{a^2}{4}}-ax+\cancel{x^2}

ax=a^2-2ax+x^2-ax

0=a^2-4ax+x^2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Cálculo de x em função de a, Geometria Plana]

Mensagempor Lenin » Qui Abr 11, 2013 20:03

young_jedi escreveu:\left(\frac{a}{2}+x\right)^2=(a-x)^2+\left(\frac{a}{2}-x\right)^2

\frac{a^2}{4}+ax+x^2=a^2-2ax+x^2+\frac{a^2}{4}-ax+x^2

\cancel{\frac{a^2}{4}}+ax+\cancel{x^2}=a^2-2ax+x^2+\cancel{\frac{a^2}{4}}-ax+\cancel{x^2}

ax=a^2-2ax+x^2-ax

0=a^2-4ax+x^2


muito obrigado brother, estava com broblemas em questão de cortar alguns valores, hj tentei responder ela novamente e consegui..abração
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.