• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria espacial] Volume de tetraedro

[Geometria espacial] Volume de tetraedro

Mensagempor rochadapesada » Seg Abr 08, 2013 21:48

qual o volume de um tetraedro regular de 10 cm de altura?

Gabarito 125\sqrt{3}

Eu não consigo desenvolver ela... Fiz de tudo, coloquei altura como um dos catetos, acho a hipotenusa, mas com o valor não consigo encontrar a resposta
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor young_jedi » Qua Abr 10, 2013 15:21

um tetraedro regular tem quatro faces sendo que essas são triangulos equilateros, voce tem calcular a area de uma das faces para calcular o volume, como voce tem a altura do tetraedro voce é capaz de achar quanto vale os lados do tetraedro e assim calcular a area de sua base.

Se não conseguir encontrar o lado e a area comente.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor rochadapesada » Qua Abr 10, 2013 16:22

Eu fiz já, coloquei a altura como cateto e coloquei \frac{2h}{3} como outro cateto para achar a hipotenusa, mas fazendo isso acho um valor, mas com esse valor não dar o resultado... Depois eu coloquei a base com altura 10 cm (já que é um triângulo equilátero) e acho outro valor, mas não dar o resultado... como falei fiz de tudo =s
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor young_jedi » Qua Abr 10, 2013 16:34

eu pensei assim sendo o lado igual a l
temos que a medida do vertice da base ate o centro da base sera

\frac{l\sqrt{3}}{3}

então temos que

l^2=\left(\frac{l\sqrt3}{3}\right)^2+h^2

então

l=h\sqrt{\frac{3}{2}}

l=10\sqrt{\frac{3}{2}}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor rochadapesada » Qua Abr 10, 2013 16:59

Imagem Pq seria \frac{l\sqrt{3}}{3}, do vértice até o centro de um triângulo equilatero será sempre esse valor? Eu nunca vi e soube que do vértice até a base seria \frac{l\sqrt{3}}{3}, pois: do centro até a reta seria uma apótema, entao seria \frac{h}{3}, entao faria um pitágoras:
{x}^{2}= {(\frac{l}{2})}^{2} + {(\frac{h}{3})}^{2}... mas com isso não daria \frac{l\sqrt{3}}{3}
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor young_jedi » Qua Abr 10, 2013 20:40

na figura tem um desenho do tetraedro e do triangulo

tetraedro.png
tetraedro.png (5.7 KiB) Exibido 5460 vezes


temos que

a.cos(30^o)=\frac{l}{2}

a\frac{\sqrt3}{3}=\frac{l}{2}

a=l\frac{\sqrt3}{3}

e da figura do tetraedro temos

l^2=a^2+h^2

l^2=\left(l\frac{\sqrt3}{3}\right)^2+h^2

portanto

l=h\sqrt{\frac{3}{2}}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria espacial] Volume de tetraedro

Mensagempor rochadapesada » Qua Abr 10, 2013 21:23

agora entendi, obrigado pela paciência uahauhauhauha
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}