• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aplicação constante] Forma genérica da função

[Aplicação constante] Forma genérica da função

Mensagempor CBRJ » Ter Abr 09, 2013 23:51

Preciso escrever a forma genérica da função que expressaria o montante a cada mês de uma aplicação mensal constante, a uma taxa composta constante.

Aplicação inicial = R$ 100
Aplicação mensal = R$ 100
Taxa de juros (composta) = 0,7% a.m.

Ex: abr/13 = 100,00, mai/13 = 200,70, jun/13 = 302,10...

Já tentei utilizar somatório, mas não deu certo.
CBRJ
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Out 09, 2012 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Aplicação constante] Forma genérica da função

Mensagempor anabatista » Qua Abr 10, 2013 00:11

Seguindo a regra de juros compostos temos
MM= C{(1+i)}^{t}
como o valor está acumulando com o do mês anterior,
voce utiliza
M= C{\Sigma(1+i)}^{t}

confere ai!
anabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Abr 08, 2013 23:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: [Aplicação constante] Forma genérica da função

Mensagempor CBRJ » Qua Abr 10, 2013 00:56

anabatista escreveu:Seguindo a regra de juros compostos temos
MM= C{(1+i)}^{t}
como o valor está acumulando com o do mês anterior,
voce utiliza
M= C{\Sigma(1+i)}^{t}

confere ai!


Fiz o teste até o 3º mês, deu um resultado diferente: R$ 304,20. Tem certeza que esse é o resultado certo?
CBRJ
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Out 09, 2012 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Aplicação constante] Forma genérica da função

Mensagempor anabatista » Qua Abr 10, 2013 01:06

Cheque direitinho
fiz o teste ate o terceiro mês e ta bantendo
vamo la!

Abril como é o mês inicial, considera 0
M=100{(1+0,007)}^{0}=100
Maio= 1
M=100\left[ {(1+0,007)}^{0}+{(1+0,007)}^{1}\right]=200,7
Junho=2
M=100\left[ {(1+0,007)}^{0}+{(1+0,007)}^{1}+{(1+0,007)}^{2}\right]=302,10

E por ai vai...
anabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Abr 08, 2013 23:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: [Aplicação constante] Forma genérica da função

Mensagempor CBRJ » Qua Abr 10, 2013 01:36

Certo, é isso mesmo! Obrigado!!
CBRJ
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Out 09, 2012 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.