• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aplicação constante] Forma genérica da função

[Aplicação constante] Forma genérica da função

Mensagempor CBRJ » Ter Abr 09, 2013 23:51

Preciso escrever a forma genérica da função que expressaria o montante a cada mês de uma aplicação mensal constante, a uma taxa composta constante.

Aplicação inicial = R$ 100
Aplicação mensal = R$ 100
Taxa de juros (composta) = 0,7% a.m.

Ex: abr/13 = 100,00, mai/13 = 200,70, jun/13 = 302,10...

Já tentei utilizar somatório, mas não deu certo.
CBRJ
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Out 09, 2012 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Aplicação constante] Forma genérica da função

Mensagempor anabatista » Qua Abr 10, 2013 00:11

Seguindo a regra de juros compostos temos
MM= C{(1+i)}^{t}
como o valor está acumulando com o do mês anterior,
voce utiliza
M= C{\Sigma(1+i)}^{t}

confere ai!
anabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Abr 08, 2013 23:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: [Aplicação constante] Forma genérica da função

Mensagempor CBRJ » Qua Abr 10, 2013 00:56

anabatista escreveu:Seguindo a regra de juros compostos temos
MM= C{(1+i)}^{t}
como o valor está acumulando com o do mês anterior,
voce utiliza
M= C{\Sigma(1+i)}^{t}

confere ai!


Fiz o teste até o 3º mês, deu um resultado diferente: R$ 304,20. Tem certeza que esse é o resultado certo?
CBRJ
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Out 09, 2012 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Aplicação constante] Forma genérica da função

Mensagempor anabatista » Qua Abr 10, 2013 01:06

Cheque direitinho
fiz o teste ate o terceiro mês e ta bantendo
vamo la!

Abril como é o mês inicial, considera 0
M=100{(1+0,007)}^{0}=100
Maio= 1
M=100\left[ {(1+0,007)}^{0}+{(1+0,007)}^{1}\right]=200,7
Junho=2
M=100\left[ {(1+0,007)}^{0}+{(1+0,007)}^{1}+{(1+0,007)}^{2}\right]=302,10

E por ai vai...
anabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Abr 08, 2013 23:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: [Aplicação constante] Forma genérica da função

Mensagempor CBRJ » Qua Abr 10, 2013 01:36

Certo, é isso mesmo! Obrigado!!
CBRJ
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Out 09, 2012 23:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?