• Anúncio Global
    Respostas
    Exibições
    Última mensagem

divisão - há algo errado?

divisão - há algo errado?

Mensagempor natanaelskt » Qua Abr 03, 2013 17:41

ola estou resolvendo esse exercicio;
dividindo x^3-4x^2+7x-3 por um certo polinomio p(x),obtemos o quociente (x-1) e o resto (2x-1). determine p(x).

já consegui resover o exercicio,porem esta dando dois valores no polimonio p(x),o termo independe da 2 em uma substituiçao,e a na outra da 4.
podem me ajudar? please
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: divisão - há algo errado?

Mensagempor DanielFerreira » Dom Abr 07, 2013 13:35

Natanaelskt,
boa tarde!

\\ D = d \times q + r \\\\ x^3 - 4x^2 + 7x - 3 = p(x) \times (x - 1) + (2x - 1) \\\\ x^3 - 4x^2 + 7x - 3 = (ax^2 + bx + c) \times (x - 1) + 2x - 1 \\\\ x^3 - 4x^2 + 7x - 3 = ax^3 - ax^2 + bx^2 - bx + cx - c + 2x - 1 \\\\ x^3 - 4x^2 + 7x - 3 = ax^3 + (- a + b)x^2 + (- b + c + 2)x - c - 1 \\\\ \begin{cases} a = 1 \\ - a + b = - 4 \\ - b + c + 2 = 7 \\ - c - 1 = - 3 \end{cases}

Da equação I, tiramos:

\boxed{a = 1}


Da equação II, tiramos:

\\ - a + b = - 4 \\ - 1 + b = - 4 \\ \boxed{b = - 3}


Da equação IV, tiramos:

\boxed{c = 2}


Logo,
\\ p(x) = ax^2 + bx + c \\ \boxed{\boxed{\boxed{p(x) = x^2 - 3x + 2}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: divisão - há algo errado?

Mensagempor natanaelskt » Seg Abr 08, 2013 09:36

obrigado cara,me exclareceu uma duvida.
até mais,abraços
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: divisão - há algo errado?

Mensagempor DanielFerreira » Seg Abr 08, 2013 17:38

Não há de quê, cara! :y:

Até.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.