por Razoli » Sáb Abr 06, 2013 15:52
Pessoal como faço para zerar o "y" para que possa resolver a matriz e achar sua determinante por escalonamento?
| x 1 2 |
|0 x 2 |
|y 0 x |
-
Razoli
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Abr 06, 2013 15:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: cursando
por e8group » Sáb Abr 06, 2013 18:28
Por favor utilize o

para redigir sua matriz, Veja o código :
- Código: Selecionar todos
\begin{pmatrix} x & 1 & 2 \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix}
Resultado :

.
Assumindo que

poderemos aplicar algumas operações elementares ,
1)
2)
![\begin{pmatrix} x & 1 & 2 \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix} \sim \begin{pmatrix} x & 0 & 2 -2x^{-1} \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix} \sim \begin{pmatrix} x & 0 & 2 -2x^{-1} \\ 0 & x & 2 \\ 0 & 0 & x -y\cdot x^{-1}[2 -2x^{-1}] \\ \end{pmatrix} \begin{pmatrix} x & 1 & 2 \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix} \sim \begin{pmatrix} x & 0 & 2 -2x^{-1} \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix} \sim \begin{pmatrix} x & 0 & 2 -2x^{-1} \\ 0 & x & 2 \\ 0 & 0 & x -y\cdot x^{-1}[2 -2x^{-1}] \\ \end{pmatrix}](/latexrender/pictures/ac09b4fc561877c36019b23d939d719a.png)
.
Editado pela última vez por
e8group em Sáb Abr 06, 2013 19:40, em um total de 1 vez.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Razoli » Sáb Abr 06, 2013 18:46
Muito Obrigado!! Me ajudou muito!!!
-
Razoli
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Abr 06, 2013 15:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: cursando
por e8group » Sáb Abr 06, 2013 19:40
Não há de que .Agora observei um erro de digitação , na última matriz o elemento 3,1 é na verdade 0 e não 1 . Já está Editado .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6915 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- Matriz & Determinante
por Colton » Qua Out 13, 2010 12:56
- 1 Respostas
- 4985 Exibições
- Última mensagem por Colton

Qua Out 20, 2010 10:02
Matrizes e Determinantes
-
- matriz e determinante
por arianos » Qui Mai 10, 2012 14:56
- 6 Respostas
- 6937 Exibições
- Última mensagem por DanielFerreira

Sáb Mai 19, 2012 10:15
Matrizes e Determinantes
-
- [Determinante de matriz]
por spektroos » Qui Nov 08, 2012 19:02
- 4 Respostas
- 5766 Exibições
- Última mensagem por spektroos

Qui Nov 08, 2012 19:35
Matrizes e Determinantes
-
- Determinante da matriz!
por Razoli » Seg Abr 08, 2013 00:10
- 1 Respostas
- 3082 Exibições
- Última mensagem por Razoli

Seg Abr 08, 2013 00:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.