por Razoli » Sáb Abr 06, 2013 15:52
Pessoal como faço para zerar o "y" para que possa resolver a matriz e achar sua determinante por escalonamento?
| x 1 2 |
|0 x 2 |
|y 0 x |
-
Razoli
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Abr 06, 2013 15:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: cursando
por e8group » Sáb Abr 06, 2013 18:28
Por favor utilize o

para redigir sua matriz, Veja o código :
- Código: Selecionar todos
\begin{pmatrix} x & 1 & 2 \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix}
Resultado :

.
Assumindo que

poderemos aplicar algumas operações elementares ,
1)
2)
![\begin{pmatrix} x & 1 & 2 \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix} \sim \begin{pmatrix} x & 0 & 2 -2x^{-1} \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix} \sim \begin{pmatrix} x & 0 & 2 -2x^{-1} \\ 0 & x & 2 \\ 0 & 0 & x -y\cdot x^{-1}[2 -2x^{-1}] \\ \end{pmatrix} \begin{pmatrix} x & 1 & 2 \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix} \sim \begin{pmatrix} x & 0 & 2 -2x^{-1} \\ 0 & x & 2 \\ y & 0 & x \\ \end{pmatrix} \sim \begin{pmatrix} x & 0 & 2 -2x^{-1} \\ 0 & x & 2 \\ 0 & 0 & x -y\cdot x^{-1}[2 -2x^{-1}] \\ \end{pmatrix}](/latexrender/pictures/ac09b4fc561877c36019b23d939d719a.png)
.
Editado pela última vez por
e8group em Sáb Abr 06, 2013 19:40, em um total de 1 vez.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Razoli » Sáb Abr 06, 2013 18:46
Muito Obrigado!! Me ajudou muito!!!
-
Razoli
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Abr 06, 2013 15:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: cursando
por e8group » Sáb Abr 06, 2013 19:40
Não há de que .Agora observei um erro de digitação , na última matriz o elemento 3,1 é na verdade 0 e não 1 . Já está Editado .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6749 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- Matriz & Determinante
por Colton » Qua Out 13, 2010 12:56
- 1 Respostas
- 4948 Exibições
- Última mensagem por Colton

Qua Out 20, 2010 10:02
Matrizes e Determinantes
-
- matriz e determinante
por arianos » Qui Mai 10, 2012 14:56
- 6 Respostas
- 6902 Exibições
- Última mensagem por DanielFerreira

Sáb Mai 19, 2012 10:15
Matrizes e Determinantes
-
- [Determinante de matriz]
por spektroos » Qui Nov 08, 2012 19:02
- 4 Respostas
- 5740 Exibições
- Última mensagem por spektroos

Qui Nov 08, 2012 19:35
Matrizes e Determinantes
-
- Determinante da matriz!
por Razoli » Seg Abr 08, 2013 00:10
- 1 Respostas
- 3068 Exibições
- Última mensagem por Razoli

Seg Abr 08, 2013 00:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.