• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria no ciclo]

[Trigonometria no ciclo]

Mensagempor Sabrinna » Qui Abr 04, 2013 18:48

Estou novamente enroscada nessa outra questão... *-)

Se cos x= -3/5 e ? ? x ? 3 ? /2, determine:
sen 2x..............cos 2x............tg 2x
Sabrinna
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 04, 2013 15:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria no ciclo]

Mensagempor e8group » Qui Abr 04, 2013 21:46

Foi dado cos(x)=  -\frac{3}{5} e x\in[\pi, 3\cdot \frac{\pi}{2}] .

Queremos calcular , sin(2x) ,cos(2x) [/tex] e tan(2x) .

Note que sin(2x) = sin(x+x) = sin(x)cos(x) + sin(x)cos(x)  = 2sin(x)cos(x) .

Mas, sabemos que pela identidade trigonométrica fundamental sin^2(x) + cos^2(x) = 1 ,então sin^2(x) = 1 - cos^2(x) e como sin(x) \leq 0 para todo x em [\pi, 3\cdot \frac{\pi}{2}] obtemos que sin(x) = - \sqrt{1-cos^2(x)} . Assim ,

sin(2x) = - 2cos(x) \sqrt{1-cos^2(x)} .Já cos(2x) = cos(x+x) = cos^2(x) - sin^2(x)  = 2cos^2(x) - 1 .Basta substituir cos(x) = -3/5 nas expressões obtidas .

Tente concluir ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Trigonometria no ciclo]

Mensagempor Sabrinna » Qui Abr 04, 2013 22:49

Parece confuso,mas com tua explicação deu para esclarecer um pouco.Vou refazer.Obrigada por tudo! :)
Sabrinna
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Abr 04, 2013 15:32
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.