• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Provar continuidade

[Limite] Provar continuidade

Mensagempor Man Utd » Qua Abr 03, 2013 09:41

Prove que f(x)=x^2 é continua, para todo ''x'' real.

comecei assim: 0<|x-c|<? e |f(x)-f(p)|<? , quando f=0, ou seja contínua em 0

|x|<?

|x^2|<?
?|x^2|<??
|x|<??

então ?=??,ñ sei continuar alguem pode me ajudar?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limite] Provar continuidade

Mensagempor e8group » Qua Abr 03, 2013 11:19

Esta questão é bem interessante ,há uma demostração dela no seguinte link : http://pt.wikibooks.org/wiki/An%C3%A1li ... e#Exemplos .Se conseguir concluir o exercício e quiser compartilhar com a comunidade fique à vontade .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite] Provar continuidade

Mensagempor Man Utd » Qua Abr 03, 2013 19:43

achei a resposta no livro,mas ñ entendi os passos seguintes:

provando para p?0

p^2-?<x^2<p^2+?
?p^2-?<|x|<?p^2+?------obs: p^2>? e ?>0.

se p>0, tomamos I=]?p^2-?,?p^2+?[, assim:

x ? I------p^2-?<x^2<p^2

se p<0, tomamos I=]-?p^2+?<x^2<-?p^2-?[

x ? I------p^2-?<x^2<p^2


logo f(x)=x^2 é continua em todo seu dominio.

ñ entendi essas partes, já provei limites pela definição, mas nunca continuidade alguem pode explicar?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: