• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Provar continuidade

[Limite] Provar continuidade

Mensagempor Man Utd » Qua Abr 03, 2013 09:41

Prove que f(x)=x^2 é continua, para todo ''x'' real.

comecei assim: 0<|x-c|<? e |f(x)-f(p)|<? , quando f=0, ou seja contínua em 0

|x|<?

|x^2|<?
?|x^2|<??
|x|<??

então ?=??,ñ sei continuar alguem pode me ajudar?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limite] Provar continuidade

Mensagempor e8group » Qua Abr 03, 2013 11:19

Esta questão é bem interessante ,há uma demostração dela no seguinte link : http://pt.wikibooks.org/wiki/An%C3%A1li ... e#Exemplos .Se conseguir concluir o exercício e quiser compartilhar com a comunidade fique à vontade .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite] Provar continuidade

Mensagempor Man Utd » Qua Abr 03, 2013 19:43

achei a resposta no livro,mas ñ entendi os passos seguintes:

provando para p?0

p^2-?<x^2<p^2+?
?p^2-?<|x|<?p^2+?------obs: p^2>? e ?>0.

se p>0, tomamos I=]?p^2-?,?p^2+?[, assim:

x ? I------p^2-?<x^2<p^2

se p<0, tomamos I=]-?p^2+?<x^2<-?p^2-?[

x ? I------p^2-?<x^2<p^2


logo f(x)=x^2 é continua em todo seu dominio.

ñ entendi essas partes, já provei limites pela definição, mas nunca continuidade alguem pode explicar?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.