• Anúncio Global
    Respostas
    Exibições
    Última mensagem

vetores

vetores

Mensagempor andre barros » Sáb Mar 30, 2013 15:26

dados os vetores u= ( 1,a,-2a-1) , v= (a,a-1,1) e w= (a, -1,1), determine a de modo que : u.v=(u+v).w
resoluçao:
u.v= (u+v).w
u.v=((1,a,-2a-1)+(a,a-1,1)).w
u.v=(1a,2a-1,-2a).(a,-1,1)
u.v=(1a²,-2a-1,-2a)
(1,a,-2a-1).(a,a-1,1)=(1a²,-2a-1,-2a)
(a,a²-1,-2a-1)=(1a²,-2a-1,-2a)
a partir daí nao sei o que fazer....
andre barros
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 30, 2013 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. mecânica
Andamento: cursando

Re: vetores

Mensagempor e8group » Sáb Mar 30, 2013 15:52

Pelas propriedades do produto escalar ,temos que :


U\cdot V=(U+V)\cdot W \iff  U\cdot V - U\cdot W - V\cdot W = 0 .

Foi dado que : U= ( 1,a,-2a-1) , V= (a,a-1,1) , W= (a, -1,1) .

Temos então ,

(i) U\cdot V =  a  + a(a-1) -2a - 1 = a^2 -2a - 1

(ii) U\cdot W =  a -a  -2a - 1 = -2a - 1

(iii) V\cdot W =  a^2 -a + 1 + 1 = a^2 -a + 2

Por (i),(ii) e (iii) , U\cdot V - U\cdot W - V\cdot W = 0 \iff ( a^2 -2a - 1) -(-2a - 1)  - (a^2 -a + 2 ) =  0 .

Tente concluir ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: vetores

Mensagempor andre barros » Sáb Mar 30, 2013 16:27

santhiago escreveu:Pelas propriedades do produto escalar ,temos que :


U\cdot V=(U+V)\cdot W \iff  U\cdot V - U\cdot W - V\cdot W = 0 .

Foi dado que : U= ( 1,a,-2a-1) , V= (a,a-1,1) , W= (a, -1,1) .

Temos então ,

(i) U\cdot V =  a  + a(a-1) -2a - 1 = a^2 -2a - 1

(ii) U\cdot W =  a -a  -2a - 1 = -2a - 1

(iii) V\cdot W =  a^2 -a + 1 + 1 = a^2 -a + 2

Por (i),(ii) e (iii) , U\cdot V - U\cdot W - V\cdot W = 0 \iff ( a^2 -2a - 1) -(-2a - 1)  - (a^2 -a + 2 ) =  0 .

Tente concluir ...

-a+2=0 a=2
seria isso?
andre barros
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 30, 2013 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. mecânica
Andamento: cursando

Re: vetores

Mensagempor e8group » Sáb Mar 30, 2013 16:36

Sim .Para conferir , basta verificar que se a = 2 a condição U\cdot V=(U+V)\cdot W é satisfeita .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: vetores

Mensagempor andre barros » Sáb Mar 30, 2013 16:50

santhiago escreveu:Sim .Para conferir , basta verificar que se a = 2 a condição U\cdot V=(U+V)\cdot W é satisfeita .


valeu santhiago, ajudou muito!
andre barros
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 30, 2013 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. mecânica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?