-tentei resolver a questão:

-Consegui, usando substituição para chamar "3x-2" de W. E somente depois aplicar a fórmula da integral por partes. Porque para mim assim fica mais fácil de entender.
- Até aí, tudo bem. O problema foi quando eu tentei resolver o exercício semelhante:
Dúvida:

- Aqui, se eu chamo
de K, por exemplo, para poder usar a substituição. Desse jeito eu chamo "u" de "
" e "dv" de "
" Mas não dá certo! 
- Eu sempre chego em algo parecido com:
![\frac{1}{2}.\left(ln(k).arcsen\left(\frac{2}{\sqrt[]{k}}\right)-\int_{}^{}arcsen\left(\frac{2}{\sqrt[]{k}}\right)dk \right) \frac{1}{2}.\left(ln(k).arcsen\left(\frac{2}{\sqrt[]{k}}\right)-\int_{}^{}arcsen\left(\frac{2}{\sqrt[]{k}}\right)dk \right)](/latexrender/pictures/cf4d5c1f673aac5a6b192656d1743349.png)
E, se é equivalente, eu não faço a menor idéia de como chegar na resposta do gabarito:

POR FAVOR GALERA. TEM COMO RESOLVE-LO USANDO SUBSTITUIÇÃO?
Att. Matheus L. Oliveira







































em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.