• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequações - funções

Inequações - funções

Mensagempor lilianers » Sex Mar 29, 2013 21:01

Como resolver a inequação (9/16) x-3 ? (36/27)x+2 e construa o gráfico das funções y(x) = (9/16) x-3 e g(x) = (36/27) x+2 , identificando no gráfico o ponto em que ambas têm o mesmo valor.

Obs.: x-3 e x-2 são potencias.

Grata

Liliane
lilianers
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 29, 2013 20:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Biológicas
Andamento: cursando

Re: Inequações - funções

Mensagempor e8group » Sáb Mar 30, 2013 13:55

A desigualdade g(x) > y(x) sempre será verdadeira para todo x > 0 .Pois g é estritamente crescente ao contrário da função y (que vc chamou de este nome) .Neste intervalo ,enquanto uma função vai para a zero (ou seja ,para x > 0 muito grande o limite de y é zero)[y] a outra não tem limite , à medida que x cresce , g cresce em uma velocidade maior que x .(OBS . : Observe que para x < 0 o argumento utilizado acima inverte com respeito as funções)

Entretanto ,existe um único x neste mesmo intervalo (x>0) tal que g(x) = y(x) .

Para isto basta tomar o logaritmo em ambos membros ,obtendo que log\left(\frac{9}{16}\right)^{x-3} = log \left(\frac{36}{27}\right)^{x+2} \iff log\left(\frac{9}{16}\right)^{x-3}  = log\left(\frac{4}{3}\right)^{x+2} 

\implies  (x-3)log \left(\frac{9}{16}\right) = (x+2)log\left(\frac{4}{3}\right) \iff x\left[log \left(\frac{9}{16}\right) -  log\left(\frac{4}{3}\right)\right ] =  2 \cdot log\left(\frac{4}{3}\right) + 3 \cdot log \left(\frac{9}{16}\right) \iff  x= \dfrac{2 \cdot log\left(\frac{4}{3}\right) + 3 \cdot log \left(\frac{9}{16}\right)}{log \left(\frac{9}{16}\right) -  log\left( \frac{4}{3}\right)\right }
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}