• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Divisões]Multiplicação junto com Soma de divisões

[Divisões]Multiplicação junto com Soma de divisões

Mensagempor Bellamv » Ter Mar 19, 2013 22:55

-2.2/3 + 1/4
Nesse exercício eu fiz primeiro a multiplicação: -4/3 + 1/4
= (-16+3)/12= -13/12
Foi o que deu a minha resposta, mas o resultado do exercício diz que é 29/12
O que eu fiz de errado?
Bellamv
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Out 27, 2012 00:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Divisões]Multiplicação junto com Soma de divisões

Mensagempor Russman » Qua Mar 20, 2013 00:33

Se a operação for

-2.\frac{2}{3}+\frac{1}{4}

então o resultado é - \frac{13}{12}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Divisões]Multiplicação junto com Soma de divisões

Mensagempor Bellamv » Seg Mar 25, 2013 21:03

Bom então o resultado q me deram ta errado...

muito obrigada mesmo pela ajuda :-D
Bellamv
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Out 27, 2012 00:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}