por fabriel » Sex Mar 22, 2013 13:09
Oi pessoal, tudo bem?
Então, estou com duvidas na resolução dessa integral:
![2\int_{0}^{\frac{\pi}{2}}(cos t) \sqrt[]{1+4{sen}^{2}t}dt 2\int_{0}^{\frac{\pi}{2}}(cos t) \sqrt[]{1+4{sen}^{2}t}dt](/latexrender/pictures/ebb2c7c7727ad910c7f3366cff7bb9d9.png)
Ai fiz o seguinte:
Chamei

Então

Logo
![=2\int_{0}^{\frac{\pi}{2}}\sqrt[]{1+4{u}^{2}}du =2\int_{0}^{\frac{\pi}{2}}\sqrt[]{1+4{u}^{2}}du](/latexrender/pictures/35a46c0b0d78300acd94e875e8bd3e97.png)
Ai resolvendo a integral, vamos chegar na seguinte expressão:
![\frac{4}{3}\sqrt[]{{\left(1+4{u}^{2} \right)}^{3}}= \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}t \right)}^{3}} \frac{4}{3}\sqrt[]{{\left(1+4{u}^{2} \right)}^{3}}= \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}t \right)}^{3}}](/latexrender/pictures/33a51ccc8c9a7c6aab796228f0747e1c.png)
Avaliados nos pontos pi/2 e 0.
Ai teremos:
![\frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(\frac{\pi}{2} \right) \right)}^{3}} - \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(0) \right)}^{3}} \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(\frac{\pi}{2} \right) \right)}^{3}} - \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(0) \right)}^{3}}](/latexrender/pictures/e3dedb381c930fb8a522d0669378b7f7.png)
e que resulta em:
![\frac{20\sqrt[]{5}}{3}-\frac{4}{3} \frac{20\sqrt[]{5}}{3}-\frac{4}{3}](/latexrender/pictures/713bf04559858b3a66ed93969e821eaf.png)
Mas o livro diz que o resultado é:
![\frac{1}{2}\left(2\sqrt[]{5}+ln(2+\sqrt[]{5} \right) \frac{1}{2}\left(2\sqrt[]{5}+ln(2+\sqrt[]{5} \right)](/latexrender/pictures/36620ab033c2b7712fb06fa83255096f.png)
Então qual foi meu erro?? Foi na hora da substituição?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por young_jedi » Sáb Mar 23, 2013 16:42
a integral em u que voce fez não da aquele resultado,
ela é uma integral como raiz e um u ao quadrado dentro dela, ela é um pouco complicada de se resolver
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral definida - Resolução
por vmouc » Qui Set 01, 2011 18:03
- 4 Respostas
- 2641 Exibições
- Última mensagem por LuizAquino

Qui Set 01, 2011 18:54
Cálculo: Limites, Derivadas e Integrais
-
- [Resolução de Integral Definida]
por Seza Saenz » Qui Mar 24, 2016 15:18
- 0 Respostas
- 1931 Exibições
- Última mensagem por Seza Saenz

Qui Mar 24, 2016 15:18
Cálculo: Limites, Derivadas e Integrais
-
- [Integral Definida] Está certa minha resolução?
por Fabio Wanderley » Seg Out 22, 2012 23:37
- 2 Respostas
- 1900 Exibições
- Última mensagem por Fabio Wanderley

Ter Out 23, 2012 00:45
Cálculo: Limites, Derivadas e Integrais
-
- Dúvidas sobre resolução
por MaraFernandes » Qua Mar 02, 2011 10:36
- 4 Respostas
- 2851 Exibições
- Última mensagem por MaraFernandes

Qui Mar 03, 2011 17:40
Sistemas de Equações
-
- Resolução por escalonamento e cramer dúvidas
por Fernanda Lauton » Qui Jun 10, 2010 19:37
- 4 Respostas
- 8322 Exibições
- Última mensagem por Fernanda Lauton

Sex Jun 11, 2010 12:06
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.