• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL DEFINIDA] Duvidas na resolução

[INTEGRAL DEFINIDA] Duvidas na resolução

Mensagempor fabriel » Sex Mar 22, 2013 13:09

Oi pessoal, tudo bem?
Então, estou com duvidas na resolução dessa integral:
2\int_{0}^{\frac{\pi}{2}}(cos t) \sqrt[]{1+4{sen}^{2}t}dt
Ai fiz o seguinte:
Chamei u=sent
Entãodu=cost dt
Logo
2\int_{0}^{\frac{\pi}{2}}(cos t) \sqrt[]{1+4{sen}^{2}t}dt =2\int_{0}^{\frac{\pi}{2}}\sqrt[]{1+4{u}^{2}}du
Ai resolvendo a integral, vamos chegar na seguinte expressão:
\frac{4}{3}\sqrt[]{{\left(1+4{u}^{2} \right)}^{3}}= \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}t \right)}^{3}} Avaliados nos pontos pi/2 e 0.
Ai teremos:
\frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(\frac{\pi}{2} \right) \right)}^{3}} - \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(0) \right)}^{3}}
e que resulta em:
\frac{20\sqrt[]{5}}{3}-\frac{4}{3}

Mas o livro diz que o resultado é: \frac{1}{2}\left(2\sqrt[]{5}+ln(2+\sqrt[]{5} \right)

Então qual foi meu erro?? Foi na hora da substituição?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL DEFINIDA] Duvidas na resolução

Mensagempor young_jedi » Sáb Mar 23, 2013 16:42

a integral em u que voce fez não da aquele resultado,
ela é uma integral como raiz e um u ao quadrado dentro dela, ela é um pouco complicada de se resolver
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59