• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[prova]

[prova]

Mensagempor Ge_dutra » Qui Mar 21, 2013 22:51

Mostre que arcsen(a) + arcsen(b) = arcsen(a\sqrt[]{1-b^2} + b\sqrt[]{1-a^2})

Não tenho ideia de como iniciar..

Alguém para ajudar?
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [prova]

Mensagempor e8group » Sex Mar 22, 2013 00:19

Definimos c = arcsin(a) e d = arcsin(b) ,então c = arcsin(a) e d = arcsin(b) se , e somente se , sin(c) = a e sin(d) = b .

Vamos começar desenvolvendo sin(c+d) = sin( arcsin(b) + arcsin(a)) que é equivalente a sin(c)cos(d) + sin(d)cos(c) .

Pela identidade trigonométrica fundamental sin^2(\theta) + cos^2(\theta) = 1, concluímos

que se c,d \in [0,\pi/2] ,ou seja , se a,b  \in [0,1] vale as relações cos(c) = \sqrt{1-sin^2(c)} e cos(d) = \sqrt{1-sin^2(d)} . Assim ,

sin(c+d) = sin(c) \sqrt{1-sin^2(d)} + sin(d) \sqrt{1-sin^2(c)} = a \sqrt{1-b^2} + b \sqrt{1-a^2} e portanto c+d = \arcsin(a \sqrt{1-b^2} + b \sqrt{1-a^2}) , isto é , arcsin(a) + arcsin(b) =  arcsin(a \sqrt{1-b^2} + b \sqrt{1-a^2})
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [prova]

Mensagempor Ge_dutra » Sex Mar 22, 2013 08:56

Obrigada!
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}