por Ge_dutra » Qui Mar 21, 2013 22:51
Mostre que arcsen(a) + arcsen(b) = arcsen(a
![\sqrt[]{1-b^2} + b\sqrt[]{1-a^2} \sqrt[]{1-b^2} + b\sqrt[]{1-a^2}](/latexrender/pictures/0cd7cc2e28d07b017c1fface8b99c099.png)
)
Não tenho ideia de como iniciar..
Alguém para ajudar?
-
Ge_dutra
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Jan 28, 2013 09:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Sex Mar 22, 2013 00:19
Definimos

e

,então

e

se , e somente se ,

e

.
Vamos começar desenvolvendo

que é equivalente a

.
Pela identidade trigonométrica fundamental

, concluímos
que se
![c,d \in [0,\pi/2] c,d \in [0,\pi/2]](/latexrender/pictures/e36b5c9d23c350e8429bd63dfa4aa0a1.png)
,ou seja , se
![a,b \in [0,1] a,b \in [0,1]](/latexrender/pictures/f3658e9e08765127e56e93a23f7302d3.png)
vale as relações

e

. Assim ,

e portanto

, isto é ,

-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ge_dutra » Sex Mar 22, 2013 08:56
Obrigada!
-
Ge_dutra
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Jan 28, 2013 09:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- prova da puc
por cleversonluizv » Qui Mar 14, 2013 15:23
- 1 Respostas
- 1380 Exibições
- Última mensagem por young_jedi

Sex Mar 15, 2013 11:36
Análise Combinatória
-
- Prova 1 - 2002
por admin » Sáb Jul 21, 2007 05:53
- 0 Respostas
- 1496 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:53
Cálculo Numérico e Aplicações
-
- Prova 1 - 2004
por admin » Sáb Jul 21, 2007 05:55
- 0 Respostas
- 1598 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:55
Cálculo Numérico e Aplicações
-
- Prova 2 - 2004
por admin » Sáb Jul 21, 2007 05:56
- 0 Respostas
- 1563 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:56
Cálculo Numérico e Aplicações
-
- exercicio de prova 3º ano
por hyenrique » Ter Fev 23, 2010 16:46
- 4 Respostas
- 5598 Exibições
- Última mensagem por hyenrique

Ter Fev 23, 2010 18:22
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.