• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[prova]

[prova]

Mensagempor Ge_dutra » Qui Mar 21, 2013 22:51

Mostre que arcsen(a) + arcsen(b) = arcsen(a\sqrt[]{1-b^2} + b\sqrt[]{1-a^2})

Não tenho ideia de como iniciar..

Alguém para ajudar?
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [prova]

Mensagempor e8group » Sex Mar 22, 2013 00:19

Definimos c = arcsin(a) e d = arcsin(b) ,então c = arcsin(a) e d = arcsin(b) se , e somente se , sin(c) = a e sin(d) = b .

Vamos começar desenvolvendo sin(c+d) = sin( arcsin(b) + arcsin(a)) que é equivalente a sin(c)cos(d) + sin(d)cos(c) .

Pela identidade trigonométrica fundamental sin^2(\theta) + cos^2(\theta) = 1, concluímos

que se c,d \in [0,\pi/2] ,ou seja , se a,b  \in [0,1] vale as relações cos(c) = \sqrt{1-sin^2(c)} e cos(d) = \sqrt{1-sin^2(d)} . Assim ,

sin(c+d) = sin(c) \sqrt{1-sin^2(d)} + sin(d) \sqrt{1-sin^2(c)} = a \sqrt{1-b^2} + b \sqrt{1-a^2} e portanto c+d = \arcsin(a \sqrt{1-b^2} + b \sqrt{1-a^2}) , isto é , arcsin(a) + arcsin(b) =  arcsin(a \sqrt{1-b^2} + b \sqrt{1-a^2})
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [prova]

Mensagempor Ge_dutra » Sex Mar 22, 2013 08:56

Obrigada!
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.