• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Se alguém tiver uma resolução diferente, poste aqui.

Se alguém tiver uma resolução diferente, poste aqui.

Mensagempor Douglas16 » Dom Mar 17, 2013 19:12

Para \lim_{x\rightarrow1} \frac{1+cos\left(\pi x \right)}{{(x-1)}^{2}}
Minha resolução foi:
\lim_{x\rightarrow1} \frac{1+cos\left(\pi x \right)}{{(x-1)}^{2}}
=\lim_{x\rightarrow1}\frac{\left(1-cos\left(\pi x \right) \right)\left(1+cos\left(\pi x \right) \right)}{{(x-1)}^{2}\left( 1-cos\left(\pi x \right)\right)}
=\lim_{x\rightarrow1}{\left[\frac{sen\left(\pi x \right)}{x-1} \right]}^{2}\left(\frac{1}{1-cos\left(\pi x \right)} \right)
=\lim_{x\rightarrow1}{\left[\frac{-\pi sen\left(\pi x-\pi \right)}{\left(\pi x-\pi \right)} \right]}^{2}\left(\frac{1}{1-cos\left(\pi x \right)} \right)
=\frac{{\pi}^{2}}{2}
Se alguém têm alguma resolução diferente, poste, ajude a enriquecer minha experiência. Obrigado.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Se alguém tiver uma resolução diferente, poste aqui.

Mensagempor e8group » Seg Mar 18, 2013 00:54

Boa resolução , segue outra ...

Considere f(x) = f(x) = \frac{1 + cos(\pi x)}{(x-1)^2} , x\neq 1 .

Fazendo \pi(x-1) = k , \left( \begin{matrix} \text{quando}\ x \to 1   , \\ k \to 0\end{matrix} \right ) .


Assim ,


\lim_{x\to1}  f(x) =  \lim_{k\to0} \frac{1 -  cos(k)}{\dfrac{k^2}{\pi^2}} = \pi^2 \lim_{k\to0}\frac{1 -  cos(k)}{k^2}


De ,

cos(k)  =  cos^2(k/2)  - sin^2(k/2) (Por que ?) , obtemos


1 -  cos(k)  =   1  - [cos^2(k/2)  - sin^2(k/2)] = ( 1  - cos^2(k/2) )  + sin^2(k/2) =  2 \cdot sin^2(k/2) .


Logo ,

\pi^2 \lim_{k\to0}\frac{1 -  cos(k)}{k^2}  =  \pi^2 \lim_{k\to0}\frac{2 \cdot sin^2(k/2)}{k^2} =  \frac{\pi^2}{2} \cdot \lim_{k\to0} \left(\frac{sin\left(\dfrac{k}{2}\right)}{\dfrac{k}{2}} \right)^2 .Pelo limite fundamental, trigonométrico , resulta \frac{\pi^2}{2} \cdot \lim_{k\to0} \left(\frac{sin\left(\dfrac{k}{2}\right)}{\dfrac{k}{2}} \right)^2  = \frac{\pi^2}{2} , ou seja , \lim_{x\to1}  f(x) = \frac{\pi^2}{2} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Se alguém tiver uma resolução diferente, poste aqui.

Mensagempor Douglas16 » Seg Mar 18, 2013 09:38

Obrigado pela resolução. Valeu!
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}