• Anúncio Global
    Respostas
    Exibições
    Última mensagem

prova da puc

prova da puc

Mensagempor cleversonluizv » Qui Mar 14, 2013 15:23

Preciso da resolução desse problema.
No livro de chamada de uma sala de aula, há alunos que vão do número 1 ao 30. De quantas maneiras podemos
escolher 3 alunos de forma que a soma de seus números de chamada seja ímpar?
R: 2030
cleversonluizv
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mar 08, 2013 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: prova da puc

Mensagempor young_jedi » Sex Mar 15, 2013 11:36

a duas formas da soma ser um numero impar,
se os tres numeros forem impar ou se um for impar e os outors dois for par

de 1 a 30 temos 15 numeros pares e 15 impares,
1) para o primeiro caso, temos a combinção de 3 numeros em quinze

C_{(3,15)}=\frac{15!}{3!12!}=455

2) para o segundo caso nos temos as combinação de 2 numeros em quinze

C_{(2,15)}=\frac{15!}{2!13!}=105

mais cada uma dessas combinações vai ser combinada com um numero impar, como temos 15 numeros impares então

105.15=1575

então o total de combinações vai ser a soma das combinações dos dois casos

1575+455=2030
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)