por Douglas16 » Dom Mar 10, 2013 16:55

Dada a figura acima:
Observação: o ponto B não vale 2, só está com esse valor por consequência de descuido na hora de construir o gráfico. Siga o que segue abaixo:
Seja C um ponto móvel no 1º quadrante, pertencente à parábola y=x² e DC a corda que liga a origem a C. Seja B um ponto móvel no eixo x positivo, cuja distância à origem é a mesma que de C à origem. Prolongue a reta que liga B e C até o ponto A, intersecção da reta com o eixo y. Se C deslizar na curva aproximando-se da origem ilimitadamente, para quais coordenadas o ponto A se aproxima?
Minha resolução é a resolução do seguinte limite:
![\lim_{x\rightarrow0} \left[ \sqrt[]{x*x+1}*(1+\sqrt[]{x*x+1})\right] \lim_{x\rightarrow0} \left[ \sqrt[]{x*x+1}*(1+\sqrt[]{x*x+1})\right]](/latexrender/pictures/d9b4df2164efa5dbc38157a316c7285a.png)
=2
Será que está certo.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Dom Mar 10, 2013 23:13
Esta certo, é isso ai mesmo!!!
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Douglas16 » Dom Mar 10, 2013 23:34
Valeu pela ajuda na análise, é como está escrito: A sabedoria habita na congregação dos sábios.
Sempre Deus provém pessoas para ajudarem.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por Douglas16 » Dom Mar 10, 2013 23:37
Valeu pela ajuda na análise, é como está escrito: A sabedoria habita na congregação dos sábios.
Sempre Deus provém pessoas para ajudarem.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Esta minha resolucao está correta?
por SsEstevesS » Dom Nov 27, 2011 10:29
- 0 Respostas
- 2618 Exibições
- Última mensagem por SsEstevesS

Dom Nov 27, 2011 10:29
Geometria Plana
-
- Será que a resolução e o resultado estão corretos
por Douglas16 » Sex Mar 08, 2013 17:33
- 1 Respostas
- 1484 Exibições
- Última mensagem por e8group

Dom Mar 10, 2013 10:57
Cálculo: Limites, Derivadas e Integrais
-
- [limite] Está correta a resolução?
por Fabio Wanderley » Qui Nov 29, 2012 11:47
- 4 Respostas
- 3433 Exibições
- Última mensagem por Fabio Wanderley

Sex Nov 30, 2012 09:36
Cálculo: Limites, Derivadas e Integrais
-
- [limites no infinito] a resolução está correta?
por Fabio Wanderley » Dom Abr 01, 2012 03:20
- 2 Respostas
- 1748 Exibições
- Última mensagem por Fabio Wanderley

Dom Abr 01, 2012 15:31
Cálculo: Limites, Derivadas e Integrais
-
- Será que esta relação geométrica esta errada?
por Guga1981 » Qua Ago 29, 2018 18:51
- 5 Respostas
- 16883 Exibições
- Última mensagem por Gebe

Sáb Set 01, 2018 22:27
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.