por Danilo » Sáb Mar 09, 2013 12:16
Eu estava resolvendo um exercício de indução mas não consegui deixar a resposta como na do livro.
Cheguei a

e quero chegar a (mas não sei como)

Grato a quem puder ajudar !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Sáb Mar 09, 2013 13:16
Boa tarde . Deixando

em evidência ,temos no numerador
![(k+1)[k(2k+1) +6(k+1)] (k+1)[k(2k+1) +6(k+1)]](/latexrender/pictures/d8ed976015e7602de6e29edbc8b4b636.png)
.
De
![2k+1 = [2k+3] +(-2) 2k+1 = [2k+3] +(-2)](/latexrender/pictures/34b1be84642392b1b59361281a48e677.png)
, obtemos
![k(2k+1) = k([2k+3] +(-2)) k(2k+1) = k([2k+3] +(-2))](/latexrender/pictures/0715b66a2c686686190c6733330546e7.png)
e ainda por distributividade resulta ,
![[2k+3]k - 2k [2k+3]k - 2k](/latexrender/pictures/6580010d3b8fd05df1884c80186805e1.png)
; logo ,
![k(2k+1) +6(k+1) = [2k+3]k - 2k + 6(k+1) = [2k+3]k +(6k +(-2k) ) + 6 = [2k+3]k + 4k +6 = [2k+3]k + 2[2k+3] = [2k+3][k+2]= k(2k+1) +6(k+1) = [2k+3]k - 2k + 6(k+1) = [2k+3]k +(6k +(-2k) ) + 6 = [2k+3]k + 4k +6 = [2k+3]k + 2[2k+3] = [2k+3][k+2]=](/latexrender/pictures/a4434813982a2e7b1a390db98b570a25.png)
e portanto ,
![(k+1)[k(2k+1) +6(k+1)] = [k+1][2k+3][k+2] (k+1)[k(2k+1) +6(k+1)] = [k+1][2k+3][k+2]](/latexrender/pictures/b3bf5f9b9e55c9ad7bcbc492ed73a2c0.png)
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida na Fatoração
por runksoneck » Sáb Fev 19, 2011 18:30
- 2 Respostas
- 4248 Exibições
- Última mensagem por runksoneck

Ter Fev 22, 2011 09:57
Pedidos
-
- dúvida fatoração
por Andrewo » Ter Mar 13, 2012 16:51
- 5 Respostas
- 2673 Exibições
- Última mensagem por LuizAquino

Qua Mar 28, 2012 17:19
Álgebra Elementar
-
- Fatoração - dúvida
por laura_biscaro » Sex Mar 15, 2013 01:06
- 3 Respostas
- 1974 Exibições
- Última mensagem por DanielFerreira

Dom Mar 17, 2013 18:57
Álgebra Elementar
-
- [Fatoração] Duvida.
por replay » Sex Mar 15, 2013 12:43
- 7 Respostas
- 4053 Exibições
- Última mensagem por timoteo

Qui Mar 21, 2013 12:23
Álgebra Elementar
-
- [Fatoração] Dúvida em exercício
por Antonio Unwisser » Sáb Ago 30, 2014 21:36
- 3 Respostas
- 2159 Exibições
- Última mensagem por DanielFerreira

Dom Set 07, 2014 21:22
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.