• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Substituição Trigonométrica

[Integral] Substituição Trigonométrica

Mensagempor klueger » Qua Mar 06, 2013 23:03

Não tenho noção... a unica dica que deram é usar o segundo caso de Substituição que seria \sqrt{a^2+u^2}

*Uma barra carregada de comprimento L produz um campo elétrico no ponto P(a,b) fora da barra, para calcular o campo elétrico, usamos a integral abaixo.

E(P)= \int\limits_{-a}^{L-a}\frac{pi.b}{4.pi.Zo.(x^2+b^2)^{2/3}}dx

*em que Pi é a densidade de carga por unidade de comprimento da barra e Zo é a permissividade do vácuo. Usando substituição trigonométrica, calcule a integral para determinar uma expressão para o campo elétrico E(P) !!
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor Russman » Qui Mar 07, 2013 00:37

Esse ponto P esta situado onde? Não tem alguma figura esse problema?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Substituição Trigonométrica

Mensagempor klueger » Qui Mar 07, 2013 00:42

.
Editado pela última vez por klueger em Qui Mar 07, 2013 00:44, em um total de 1 vez.
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor klueger » Qui Mar 07, 2013 00:44

Russman escreveu:Esse ponto P esta situado onde? Não tem alguma figura esse problema?


Não... só pede a integral para ter uma expressão desse campo elétrico E(P)
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor Russman » Qui Mar 07, 2013 01:45

Você precisa decompor o campo elétrico em componentes e integra-las usando o ângulo formado entre a linha perpendicular a barra, que a liga com o ponto P, e uma imaginária que ligue um diferencial de comprimento da mesma como variável de integração.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}