• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Substituição Trigonométrica

[Integral] Substituição Trigonométrica

Mensagempor klueger » Qua Mar 06, 2013 23:03

Não tenho noção... a unica dica que deram é usar o segundo caso de Substituição que seria \sqrt{a^2+u^2}

*Uma barra carregada de comprimento L produz um campo elétrico no ponto P(a,b) fora da barra, para calcular o campo elétrico, usamos a integral abaixo.

E(P)= \int\limits_{-a}^{L-a}\frac{pi.b}{4.pi.Zo.(x^2+b^2)^{2/3}}dx

*em que Pi é a densidade de carga por unidade de comprimento da barra e Zo é a permissividade do vácuo. Usando substituição trigonométrica, calcule a integral para determinar uma expressão para o campo elétrico E(P) !!
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor Russman » Qui Mar 07, 2013 00:37

Esse ponto P esta situado onde? Não tem alguma figura esse problema?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Substituição Trigonométrica

Mensagempor klueger » Qui Mar 07, 2013 00:42

.
Editado pela última vez por klueger em Qui Mar 07, 2013 00:44, em um total de 1 vez.
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor klueger » Qui Mar 07, 2013 00:44

Russman escreveu:Esse ponto P esta situado onde? Não tem alguma figura esse problema?


Não... só pede a integral para ter uma expressão desse campo elétrico E(P)
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Substituição Trigonométrica

Mensagempor Russman » Qui Mar 07, 2013 01:45

Você precisa decompor o campo elétrico em componentes e integra-las usando o ângulo formado entre a linha perpendicular a barra, que a liga com o ponto P, e uma imaginária que ligue um diferencial de comprimento da mesma como variável de integração.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.